BP神经网络

北战南征 提交于 2019-12-04 21:30:12

算法原理

参数更新公式(梯度下降)
\[\upsilon \gets \upsilon + \Delta \upsilon\]

针对隐层到输出层的连接权

实际上,三层网络可以记为
\[ g_k(x) = f_2(\sum_{j=1}^{l} \omega_{kj} f_1(\sum_{i=1}^{d} \omega_{ji} x_i + \omega_{j0}) + \omega _{k0}) \]
因此可继续推得

  1. \[ \Delta \theta_{j} = -\eta \frac{\partial E_k}{\partial \theta_{j}} \\ = -\eta \frac{\partial E_k}{\partial \hat{y_j}^k} \frac{{\partial \hat{y_j}^k}}{\partial \beta_j} \frac{\partial \beta_j}{\partial \theta_j} \\ = -\eta g_j * 1\\ = -\eta g_j \]
  2. \[ \Delta V_{ih} = -\eta\frac{\partial E_k}{\partial \hat{y_{1...j}}^k} \frac{\partial \hat{y_{1...j}}^k}{\partial b_n} \frac{\partial b_n}{\partial \alpha_n} \frac{\partial \alpha_n}{\partial v_{ih}} \\ =-\eta\sum_{j=1}^{l} \frac{\partial E_k}{\partial \hat{y_{j}}^k} \frac{\partial \hat{y_{j}}^k}{\partial b_n} \frac{\partial b_n}{\partial \alpha_n} \frac{\partial \alpha_n}{\partial v_{ih}} \\ =-\eta x_i \sum_{j=1}^{l} \frac{\partial E_k}{\partial \hat{y_{j}}^k} \frac{\partial \hat{y_{j}}^k}{\partial b_n} \frac{\partial b_n}{\partial \alpha_n} \\ = \eta e_h x_i \]
    \[ e_h = -\sum_{j=1}^{l} \frac{\partial E_k}{\partial \hat{y_{j}}^k} \frac{\partial \hat{y_{j}}^k}{\partial b_n} \frac{\partial b_n}{\partial \alpha_n} \\ = b_n(1-b_n) \sum_{j=1}^{l} \omega_{hj} g_j \]
  3. 可类似1得
    \[ \Delta \gamma_h = -\eta e_h \]


参考文献

《机器学习》,周志华著

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!