I am trying to implement LDA using Spark MLlib.
But I am having difficulty understanding input format. I was able to run its sample implementation to take input from a file which contains only number's as shown :
1 2 6 0 2 3 1 1 0 0 3
1 3 0 1 3 0 0 2 0 0 1
1 4 1 0 0 4 9 0 1 2 0
2 1 0 3 0 0 5 0 2 3 9
3 1 1 9 3 0 2 0 0 1 3
4 2 0 3 4 5 1 1 1 4 0
2 1 0 3 0 0 5 0 2 2 9
1 1 1 9 2 1 2 0 0 1 3
4 4 0 3 4 2 1 3 0 0 0
2 8 2 0 3 0 2 0 2 7 2
1 1 1 9 0 2 2 0 0 3 3
4 1 0 0 4 5 1 3 0 1 0
I followed http://spark.apache.org/docs/latest/mllib-clustering.html#latent-dirichlet-allocation-lda
I understand the output format of this as explained here.
My use case is very simple, I have one data file with some sentences.
I want to convert this file into corpus so that to pass it to org.apache.spark.mllib.clustering.LDA.run()
.
My doubt is about what those numbers in input represent which is then zipWithIndex and passed to LDA? Is it like number 1 appearing everywhere represent same word or it is some kind of count?
First you need to convert your sentences into vectors.
val documents: RDD[Seq[String]] = sc.textFile("yourfile").map(_.split(" ").toSeq)
val hashingTF = new HashingTF()
val tf: RDD[Vector] = hashingTF.transform(documents)
val idf = new IDF().fit(tf)
val tfidf: RDD[Vector] = idf.transform(tf)
val corpus = tfidf.zipWithIndex.map(_.swap).cache()
// Cluster the documents into three topics using LDA
val ldaModel = new LDA().setK(3).run(corpus)
Read more about TF_IDF vectorization here
来源:https://stackoverflow.com/questions/37869165/understanding-spark-mllib-lda-input-format