NB-IOT Downlink OFDM参数
1.下行基于OFDMA, FF点数=128,基带采样速率1.92MHz,子载波间距15kHz,有效带宽180kHz=1PRB
OFDMA:
正交频分多址,OFDMA是OFDM技术的演进,将OFDM和FDMA技术结合。在利用OFDM对信道进行父载波化后,在部分子载波上加载传输数据的传输技术。OFDM是一种调制方式;OFDMA是一种多址接入技术,用户通过OFDMA共享频带资源,接入系统。OFDMA又分为子信道(Subchannel)OFDMA和跳频OFDMA。
子信道OFDMA
子信道OFDMA将整个OFDM系统的带宽分成若干子信道,每个子信道包括若干子载波,分配给一个用户(也可以一个用户占用多个子信道)。 OFDM子载波可以按两种方式组合成子信道:集中式和分布式,如下图所示。
-
集中式将若干连续子载波分配给一个子信道(用户),这种方式下系统可以通过频域调度(Scheduling)选择较优的子信道(用户)进行传输,从而获得多用户分集增益。另外,集中方式也可以降低信道估计的难度。但这种方式获得的频率分集增益较小,用户平均性能略差。
-
分布式系统将分配给一个子信道的子载波分散到整个带宽,各子载波交替排列,从而获得频率分集增益。但这种方式下信道估计较为复杂,也无法采用频域调度,抗频偏能力也较差。
设计中应根据实际情况在上述两种方式中灵活进行选择。
-
当信道估计准确性较高如终端低速移动时,可以采用集中式分配,获得多用户分集增益。
-
当信道估计准确性不高如终端快速移动时,可以采用分布式分配,获得单用户频率分集增益。
跳频OFDMA
子信道OFDMA对子信道(用户)的子载波分配相对固定,即某个用户在相当长的时长内使用指定的子载波组(这个时长由频域调度的周期而定)。
这种OFDMA系统足以实现小区内的多址,但实现小区间多址却有一定的问题。因为如果各小区根据本小区的信道变化情况进行调度,各小区使用的子载波资源难免冲突,随之导致小区间干扰。如果要避免这样的干扰,则需要在相邻小区间进行协调(联合调度),但这种协调可能需要网络层的信令交换的支持,对网络结构的影响较大。
一种很好的选择就是采用跳频OFDMA。
在跳频OFDMA系统中,分配给一个用户的子载波资源快速变化,每个时隙,此用户在所有子载波中抽取若干子载波使用,同一时隙中,各用户选用不同的子载波组,如下图所示。
与基于频域调度的子信道化不同,这种子载波的选择通常不依赖信道条件而定,而是随机抽取。在下一个时隙,无论信道是否发生变化,各用户都跳到另一组子载波发送,但用户使用的子载波仍不冲突。跳频的周期可能比子信道OFDMA的调度周期短的多,最短可为OFDM符号长度。这样,在小区内部,各用户仍然正交,并可利用频域分集增益。在小区之间不需进行协调,使用的子载波可能冲突,但快速跳频机制可以将这些干扰在时域和频域分散开来,即可将干扰白化为噪声,大大降低干扰的危害。在负载不是很重的系统中,跳频OFDMA可以简单而有效地抑制小区间干扰。
快速傅里叶变换点数FFT
1、一般应该是2的n次方,这样便于FFT进行更多层次的二分,从而加快变换速度。
2、为了对所有的点进行FFT应该,点数应该大于已采到点数。要是一次变换点数小于现有的采样点数,FFT会分段处理吗?
在python中,若采样点数是8172,NFFT = 256,那么应该会进行分段处理,然后再对,不同的段求均值,代码看的不太明白,有待进一步了解。
3、实际采样点越多,FFT后的频率分辨率越高。
4、FFT补零,频谱包络不变,但是频率分辨率会提高,从不同的角度看有区别,有待进一步了解。
2.CP length=10/9 samples