stereo vision 3d point calculation with known intrinsic and extrinsic matrix

烈酒焚心 提交于 2019-12-04 15:46:43

The term "baseline" usually just means translation. Since you already have your rotation, translation and intrinsics matrices (let's not them R, T and K). you can triangulate and don't need either the Fundamental or Essential matrices (they could be used to extract R, T etc but you already have them). You don't really need your images to be rectified either, since it doesn't change the triangulation process that much. There are many ways to triangulate, each with their pros and cons, and many libraries that implement them. So, all I can do here is give you and overview of the problem and potential solutions, as well as pointers to resources that you can either use as their are or as a source of inspiration to write your own code.

  • Formalization and solution outlines. Let's formalize what we are after here. You have a 3d point X, with two observations x_1 and x_2 respectively in the left and right images. If you backproject them, you obtain two rays:

    ray_1=K^{1}x_1
    rat_2=R*K^{-1}x_2+T  //I'm assuming that [R|T] is the pose of the second camera expressed in the referential of the first camera 
    

    Ideally, you'd want those two rays to meet at point X. Since in practice we always have some noise (discretization noise, rounding errors and so on) the two rays wont meet at X, so the best answer would be a point Q such that

    Q=argmin_X {d(X,ray_1)^2+d(X,ray_2)^2}
    

    where d(.) denotes the Euclidian distance between a line and a point. You can solve this problem as a regular least squares problem, or you can just take the geometric approach (called midpoint) of considering the line segment l that is perpendicular to both ray_1 and ray_2, and take its middle as your solution. Another quick and dirty way is to use the DLT. Basically, you re-write the constrains (i.e. X should be as close as possible to both rays) as a linear system AX=0 and solve it with SVD.

    Usually, the geometric (midpoint) method is the less precise. The DLT based one, while not the most stable numerically, usually produces acceptable results.

  • Ressources that present in depth formalization

    Hartley-Zisserman's book of course! Chapter 12. A simple DLT-based method, which is the one used in opencv (both in the calibration and sfm modules) is explained on page 312. It is very easy to implement, it shouldn't take more that 10 minutes in any language.

    Szeliski'st book. It has an intersting discussion on triangulation in the chapter on SFM, but is not as straight-forward or in depth as Hartley-Zisserman's.

  • Code. You can use the triangulation methods from opencv, either from the calib3d module, or from the contribs/sfm module. Both use the DLT, but the code from the SFM module is more easily understandable (the calib3d code has a lot of old-school C code which is not very pleasant to read). There is also another lib, called openGV, which has a few interesting methods for triangulation.

    cv::triangulatePoints

    cv::sfm::triangulatePoints

    OpenGV

    The openGV git repo doesn't seem very active, and I'm not a big fan of the design of the library, but if I remember correctly (feel free to tell me otherwise) it offers methods other that the DLT for triangulations.

    Naturally, those are all written in C++, but if you use other languages, finding wrappers or similar libraries wont be difficult (with python you still have opencv wrappers, and MATLAB has a bundle module, etc.).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!