Calculating an area under a continuous density plot

一世执手 提交于 2019-12-04 13:21:35

问题


I have two density curves plotted using this:

Network <- Mydf$Networks
quartiles <-  quantile(Mydf$Avg.Position,  probs=c(25,50,75)/100)
density <- ggplot(Mydf, aes(x = Avg.Position, fill = Network))
d <- density + geom_density(alpha = 0.2) + xlim(1,11) + opts(title = "September 2010") + geom_vline(xintercept = quartiles, colour = "red")
print(d)

I'd like to compute the area under each curve for a given Avg.Position range. Sort of like pnorm for the normal curve. Any ideas?


回答1:


Calculate the density seperately and plot that one to start with. Then you can use basic arithmetics to get the estimate. An integration is approximated by adding together the area of a set of little squares. I use the mean method for that. the length is the difference between two x-values, the height is the mean of the y-value at the begin and at the end of the interval. I use the rollmeans function in the zoo package, but this can be done using the base package too.

require(zoo)

X <- rnorm(100)
# calculate the density and check the plot
Y <- density(X) # see ?density for parameters
plot(Y$x,Y$y, type="l") #can use ggplot for this too
# set an Avg.position value
Avg.pos <- 1

# construct lengths and heights
xt <- diff(Y$x[Y$x<Avg.pos])
yt <- rollmean(Y$y[Y$x<Avg.pos],2)
# This gives you the area
sum(xt*yt)

This gives you a good approximation up to 3 digits behind the decimal sign. If you know the density function, take a look at ?integrate




回答2:


Three possibilities:

The logspline package provides a different method of estimating density curves, but it does include pnorm style functions for the result.

You could also approximate the area by feeding the x and y variables returned by the density function to the approxfun function and using the result with the integrate function. Unless you are interested in precise estimates of small tail areas (or very small intervals) then this will probably give a reasonable approximation.

Density estimates are just sums of the kernels centered at the data, one such kernel is just the normal distribution. You could average the areas from pnorm (or other kernels) with the sd defined by the bandwidth and centered at your data.



来源:https://stackoverflow.com/questions/3876219/calculating-an-area-under-a-continuous-density-plot

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!