Distance from Point To Line great circle function not working right.

久未见 提交于 2019-12-04 09:52:37
duffymo

Most trig functions need radians. Are your angular measures in degrees? Perhaps they need to be converted using the usual formula:

2*π radians = 360 degrees

If you look under the formula for Haversine formula, you'll see this:

(Note that angles need to be in radians to pass to trig functions).

user181345

Is your function returning same value for these coordinates:

crossTrack(0,0,0,1,0.1,0.5);
crossTrack(0,0,0,1,0.1,0.6);
crossTrack(0,0,0,1,0.1,0.4);

I think it should but mine does not. The 3rd point is always 0.1 to the north from equator. only the longitude changes which should not affect the result. As it seems it does.

I tried this pointlinedistancetest sending it aalatlon etc

private static final double _eQuatorialEarthRadius = 6378.1370D;
private static final double _d2r = (Math.PI / 180D);
private static double PRECISION = 1;





// Haversine Algorithm
// source: http://stackoverflow.com/questions/365826/calculate-distance-between-2-gps-coordinates

private static double HaversineInM(double lat1, double long1, double lat2, double long2) {
    return  (1000D * HaversineInKM(lat1, long1, lat2, long2));



}

private static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
    double dlong = (long2 - long1) * _d2r;
    double dlat = (lat2 - lat1) * _d2r;
    double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
            * Math.pow(Math.sin(dlong / 2D), 2D);
    double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
    double d = _eQuatorialEarthRadius * c;





    return d;
}

// Distance between a point and a line

public static double pointLineDistanceTest(double[] aalatlng,double[] bblatlng,double[]cclatlng){



    double [] a = aalatlng;
    double [] b = bblatlng;
    double [] c = cclatlng;




    double[] nearestNode = nearestPointGreatCircle(a, b, c);
    //        System.out.println("nearest node: " + Double.toString(nearestNode[0])
    + ","+Double.toString(nearestNode[1]));
    double result =  HaversineInM(c[0], c[1], nearestNode[0], nearestNode[1]);

       //        System.out.println("result: " + Double.toString(result));



          return (result);






}

// source: http://stackoverflow.com/questions/1299567/how-to-calculate-distance-from-a-point-to-a-line-segment-on-a-sphere
private static double[] nearestPointGreatCircle(double[] a, double[] b, double c[])
{
    double[] a_ = toCartsian(a);
    double[] b_ = toCartsian(b);
    double[] c_ = toCartsian(c);

    double[] G = vectorProduct(a_, b_);
    double[] F = vectorProduct(c_, G);
    double[] t = vectorProduct(G, F);

    return fromCartsian(multiplyByScalar(normalize(t), _eQuatorialEarthRadius));
}

@SuppressWarnings("unused")
private static double[] nearestPointSegment (double[] a, double[] b, double[] c)
{
   double[] t= nearestPointGreatCircle(a,b,c);
   if (onSegment(a,b,t))
     return t;

   return (HaversineInKM(a[0], a[1], c[0], c[1]) < HaversineInKM(b[0], b[1], c[0], c[1])) ? a : b;
}

 private static boolean onSegment (double[] a, double[] b, double[] t)
   {
     // should be   return distance(a,t)+distance(b,t)==distance(a,b), 
     // but due to rounding errors, we use: 
     return Math.abs(HaversineInKM(a[0], a[1], b[0], b[1])-HaversineInKM(a[0], a[1], t[0], t[1])-HaversineInKM(b[0], b[1], t[0], t[1])) < PRECISION;
   }


// source: http://stackoverflow.com/questions/1185408/converting-from-longitude-latitude-to-cartesian-coordinates
private static double[] toCartsian(double[] coord) {
    double[] result = new double[3];
    result[0] = _eQuatorialEarthRadius * Math.cos(Math.toRadians(coord[0])) * Math.cos(Math.toRadians(coord[1]));
    result[1] = _eQuatorialEarthRadius * Math.cos(Math.toRadians(coord[0])) * Math.sin(Math.toRadians(coord[1]));
    result[2] = _eQuatorialEarthRadius * Math.sin(Math.toRadians(coord[0]));


    return result;
}

private static double[] fromCartsian(double[] coord){
    double[] result = new double[2];
    result[0] = Math.toDegrees(Math.asin(coord[2] / _eQuatorialEarthRadius));
    result[1] = Math.toDegrees(Math.atan2(coord[1], coord[0]));

    return result;
}


// Basic functions
private static double[] vectorProduct (double[] a, double[] b){
    double[] result = new double[3];
    result[0] = a[1] * b[2] - a[2] * b[1];
    result[1] = a[2] * b[0] - a[0] * b[2];
    result[2] = a[0] * b[1] - a[1] * b[0];

    return result;
}

private static double[] normalize(double[] t) {
    double length = Math.sqrt((t[0] * t[0]) + (t[1] * t[1]) + (t[2] * t[2]));
    double[] result = new double[3];
    result[0] = t[0]/length;
    result[1] = t[1]/length;
    result[2] = t[2]/length;
    return result;
}

private static double[] multiplyByScalar(double[] normalize, double k) {
    double[] result = new double[3];
    result[0] = normalize[0]*k;
    result[1] = normalize[1]*k;
    result[2] = normalize[2]*k;
    return result;
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!