问题
I have been trying to understand the tradeoff between read
and seek
. For small "jumps" reading unneeded data is faster than skipping it with seek
.
While timing different read/seek chunk sizes to find the tipping point, I came across a odd phenomenon: read(1)
is about 20 times slower than read(2)
, read(3)
, etc. This effect is the same for different read methods, e.g. read()
and readinto()
.
Why is this the case?
Search in the timing results for the following line 2/3 of the way through:
2 x buffered 1 byte readinto bytearray
Environment:
Python 3.5.2 |Continuum Analytics, Inc.| (default, Jul 5 2016, 11:45:57) [MSC v.1900 32 bit (Intel)]
Timing results:
Non-cachable binary data ingestion (file object blk_size = 8192):
- 2 x buffered 0 byte readinto bytearray:
robust mean: 6.01 µs +/- 377 ns
min: 3.59 µs
- Buffered 0 byte seek followed by 0 byte readinto:
robust mean: 9.31 µs +/- 506 ns
min: 6.16 µs
- 2 x buffered 4 byte readinto bytearray:
robust mean: 14.4 µs +/- 6.82 µs
min: 2.57 µs
- 2 x buffered 7 byte readinto bytearray:
robust mean: 14.5 µs +/- 6.76 µs
min: 3.08 µs
- 2 x buffered 2 byte readinto bytearray:
robust mean: 14.5 µs +/- 6.77 µs
min: 3.08 µs
- 2 x buffered 5 byte readinto bytearray:
robust mean: 14.5 µs +/- 6.76 µs
min: 3.08 µs
- 2 x buffered 3 byte readinto bytearray:
robust mean: 14.5 µs +/- 6.73 µs
min: 2.57 µs
- 2 x buffered 49 byte readinto bytearray:
robust mean: 14.5 µs +/- 6.72 µs
min: 2.57 µs
- 2 x buffered 6 byte readinto bytearray:
robust mean: 14.6 µs +/- 6.76 µs
min: 3.08 µs
- 2 x buffered 343 byte readinto bytearray:
robust mean: 15.3 µs +/- 6.43 µs
min: 3.08 µs
- 2 x buffered 2401 byte readinto bytearray:
robust mean: 138 µs +/- 247 µs
min: 4.11 µs
- Buffered 7 byte seek followed by 7 byte readinto:
robust mean: 278 µs +/- 333 µs
min: 15.4 µs
- Buffered 3 byte seek followed by 3 byte readinto:
robust mean: 279 µs +/- 333 µs
min: 14.9 µs
- Buffered 1 byte seek followed by 1 byte readinto:
robust mean: 279 µs +/- 334 µs
min: 15.4 µs
- Buffered 2 byte seek followed by 2 byte readinto:
robust mean: 279 µs +/- 334 µs
min: 15.4 µs
- Buffered 4 byte seek followed by 4 byte readinto:
robust mean: 279 µs +/- 334 µs
min: 15.4 µs
- Buffered 49 byte seek followed by 49 byte readinto:
robust mean: 281 µs +/- 336 µs
min: 14.9 µs
- Buffered 6 byte seek followed by 6 byte readinto:
robust mean: 281 µs +/- 337 µs
min: 15.4 µs
- 2 x buffered 1 byte readinto bytearray:
robust mean: 282 µs +/- 334 µs
min: 17.5 µs
- Buffered 5 byte seek followed by 5 byte readinto:
robust mean: 282 µs +/- 338 µs
min: 15.4 µs
- Buffered 343 byte seek followed by 343 byte readinto:
robust mean: 283 µs +/- 340 µs
min: 15.4 µs
- Buffered 2401 byte seek followed by 2401 byte readinto:
robust mean: 309 µs +/- 373 µs
min: 15.4 µs
- Buffered 16807 byte seek followed by 16807 byte readinto:
robust mean: 325 µs +/- 423 µs
min: 15.4 µs
- 2 x buffered 16807 byte readinto bytearray:
robust mean: 457 µs +/- 558 µs
min: 16.9 µs
- Buffered 117649 byte seek followed by 117649 byte readinto:
robust mean: 851 µs +/- 1.08 ms
min: 15.9 µs
- 2 x buffered 117649 byte readinto bytearray:
robust mean: 1.29 ms +/- 1.63 ms
min: 18 µs
Benchmarking code:
from _utils import BenchmarkResults
from timeit import timeit, repeat
import gc
import os
from contextlib import suppress
from math import floor
from random import randint
### Configuration
FILE_NAME = 'test.bin'
r = 5000
n = 100
reps = 1
chunk_sizes = list(range(7)) + [7**x for x in range(1,7)]
results = BenchmarkResults(description = 'Non-cachable binary data ingestion')
### Setup
FILE_SIZE = int(100e6)
# remove left over test file
with suppress(FileNotFoundError):
os.unlink(FILE_NAME)
# determine how large a file needs to be to not fit in memory
gc.collect()
try:
while True:
data = bytearray(FILE_SIZE)
del data
FILE_SIZE *= 2
gc.collect()
except MemoryError:
FILE_SIZE *= 2
print('Using file with {} GB'.format(FILE_SIZE / 1024**3))
# check enough data in file
required_size = sum(chunk_sizes)*2*2*reps*r
print('File size used: {} GB'.format(required_size / 1024**3))
assert required_size <= FILE_SIZE
# create test file
with open(FILE_NAME, 'wb') as file:
buffer_size = int(10e6)
data = bytearray(buffer_size)
for i in range(int(FILE_SIZE / buffer_size)):
file.write(data)
# read file once to try to force it into system cache as much as possible
from io import DEFAULT_BUFFER_SIZE
buffer_size = 10*DEFAULT_BUFFER_SIZE
buffer = bytearray(buffer_size)
with open(FILE_NAME, 'rb') as file:
bytes_read = True
while bytes_read:
bytes_read = file.readinto(buffer)
blk_size = file.raw._blksize
results.description += ' (file object blk_size = {})'.format(blk_size)
file = open(FILE_NAME, 'rb')
### Benchmarks
setup = \
"""
# random seek to avoid advantageous starting position biasing results
file.seek(randint(0, file.raw._blksize), 1)
"""
read_read = \
"""
file.read(chunk_size)
file.read(chunk_size)
"""
seek_seek = \
"""
file.seek(buffer_size, 1)
file.seek(buffer_size, 1)
"""
seek_read = \
"""
file.seek(buffer_size, 1)
file.read(chunk_size)
"""
read_read_timings = {}
seek_seek_timings = {}
seek_read_timings = {}
for chunk_size in chunk_sizes:
read_read_timings[chunk_size] = []
seek_seek_timings[chunk_size] = []
seek_read_timings[chunk_size] = []
for j in range(r):
#file.seek(0)
for chunk_size in chunk_sizes:
buffer = bytearray(chunk_size)
read_read_timings[chunk_size].append(timeit(read_read, setup, number=reps, globals=globals()))
#seek_seek_timings[chunk_size].append(timeit(seek_seek, setup, number=reps, globals=globals()))
seek_read_timings[chunk_size].append(timeit(seek_read, setup, number=reps, globals=globals()))
for chunk_size in chunk_sizes:
results['2 x buffered {} byte readinto bytearray'.format(chunk_size)] = read_read_timings[chunk_size]
#results['2 x buffered {} byte seek'.format(chunk_size)] = seek_seek_timings[chunk_size]
results['Buffered {} byte seek followed by {} byte readinto'.format(chunk_size, chunk_size)] = seek_read_timings[chunk_size]
### Cleanup
file.close()
os.unlink(FILE_NAME)
results.show()
results.save()
回答1:
Reading from a file handle byte-for-byte will be generally slower than reading chunked.
In general, every read() call corresponds to a C read() call in Python. The total result involves a system call requesting the next char. For a file of 2 kb, this means 2000 calls to the kernel; each requiring a function call, request to the kernel, then awaiting response, passing that through the return.
Most notable here is awaiting response
, the system call will block until your call is acknowledged in a queue, so you have to wait.
Fewer calls the better, so more bytes is faster; which is why buffered io is in fairly common use.
In python, buffering can be provided by io.BufferedReader
or through the buffering
keyword argument on open
for files
回答2:
I have seen similar situations while dealing with arduinos interfacing with EEPROM. Basically, in order to write or read from a chip or data structure, you have to send a write/read enable command, send a starting location, and then grab the first character. If you grab multiple bytes, however, most chips will auto-increment their target address registers. Thus, there is some overhead for starting a read/write operation. It's the difference between:
- Start communications
- Send read enable
- Send read command
- Send address 1
- Grab data from target 1
- End communications
- Start communications
- Send read enable
- Send read command
- Send address 2
- Grab data from target 2
- End communications
and
- Start communications
- Send read enable
- Send read command
- Send address 1
- Grab data from target 1
- Grab data from target 2
- End communications
Just, in terms of machine instructions, reading multiple bits/bytes at a time clears a lot of overhead. It's even worse when some chips require you to idle for a few clock cycles after the read/write enable is send to let a mechanical process physically move a transistor into place to enable the reading or writing.
来源:https://stackoverflow.com/questions/41625529/why-is-reading-one-byte-20x-slower-than-reading-2-3-4-bytes-from-a-file