KDTree Implementation in Java

半世苍凉 提交于 2019-11-26 19:25:47

问题


I'm looking for a KDTree implementation in Java.
I've done a google search and the results seem pretty haphazard. There are actually lots of results, but they're mostly just little one-off implementations, and I'd rather find something with a little more "production value". Something like apache collections or the excellent C5 collection library for .NET. Something where I can see the public bug tracker and check to see when the last SVN commit happened. Also, in an ideal world, I'd find a nice well-designed API for spatial data structures, and the KDTree would be just one class in that library.

For this project, I'll only be working in either 2 or 3 dimensions, and I'm mostly just interested in a good nearest-neighbors implementation.


回答1:


In the book Algorithms in a Nutshell there is a kd tree implementation in java along with a few variations. All of the code is on oreilly.com and the book itself also walk you through the algorithm so you could build one yourself.




回答2:


for future seekers. Java-ml library has a kd-tree implementation that work fine. http://java-ml.sourceforge.net/




回答3:


I've had success with Professor Levy's implementation found here. I realize you're looking for a more production-certified implementation so this is probably not a good fit.

However note to any passers-by, I've been using it for a while now in my photomosaic project with no issues. No guarantee but better than nothing :)




回答4:


I created a KD-Tree implementation as part of an offline reverse geocoding library

https://github.com/AReallyGoodName/OfflineReverseGeocode




回答5:


Maybe Nearest Neighbor Search and KD-trees from the Stony-Brook algorithm repository can help.




回答6:


There is also JTS Topology Suite

The KdTree implementation only provides range search (no nearest-neighbors).

If nearest-neighbor is your thing look at STRtree




回答7:


You are correct, there are not that many sites with kd implementation for java! anyways, kd tree is basically a binary search tree which a median value typically is calculated each time for that dimension. Here is simple KDNode and in terms of nearest neighbor method or full implementation take a look at this github project. It was the best one I could find for you. Hope this helps you.

private class KDNode {
    KDNode left;
    KDNode right;
    E val;
    int depth;
    private KDNode(E e, int depth){
    this.left = null;
    this.right = null;
    this.val = e;
    this.depth = depth;
}



回答8:


This is a full implementation for KD-Tree, I have used some libraries to store point and rectangle. These libraries are freely available. It is possible to do with these classes my making your own classes to store point and rectangle. Please share your feedback.

import java.util.ArrayList;
import java.util.List;
import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.Point2D;
import edu.princeton.cs.algs4.RectHV;
import edu.princeton.cs.algs4.StdDraw;
public class KdTree {
    private static class Node {
        public Point2D point; // the point
        public RectHV rect; // the axis-aligned rectangle corresponding to this
        public Node lb; // the left/bottom subtree
        public Node rt; // the right/top subtree
        public int size;
        public double x = 0;
        public double y = 0;
        public Node(Point2D p, RectHV rect, Node lb, Node rt) {
            super();
            this.point = p;
            this.rect = rect;
            this.lb = lb;
            this.rt = rt;
            x = p.x();
            y = p.y();
        }

    }
    private Node root = null;;

    public KdTree() {
    }

    public boolean isEmpty() {
        return root == null;
    }

    public int size() {
        return rechnenSize(root);
    }

    private int rechnenSize(Node node) {
        if (node == null) {
            return 0;
        } else {
            return node.size;
        }
    }

    public void insert(Point2D p) {
        if (p == null) {
            throw new NullPointerException();
        }
        if (isEmpty()) {
            root = insertInternal(p, root, 0);
            root.rect = new RectHV(0, 0, 1, 1);
        } else {
            root = insertInternal(p, root, 1);
        }
    }

    // at odd level we will compare x coordinate, and at even level we will
    // compare y coordinate
    private Node insertInternal(Point2D pointToInsert, Node node, int level) {
        if (node == null) {
            Node newNode = new Node(pointToInsert, null, null, null);
            newNode.size = 1;
            return newNode;
        }
        if (level % 2 == 0) {//Horizontal partition line
            if (pointToInsert.y() < node.y) {//Traverse in bottom area of partition
                node.lb = insertInternal(pointToInsert, node.lb, level + 1);
                if(node.lb.rect == null){
                    node.lb.rect = new RectHV(node.rect.xmin(), node.rect.ymin(),
                            node.rect.xmax(), node.y);
                }
            } else {//Traverse in top area of partition
                if (!node.point.equals(pointToInsert)) {
                    node.rt = insertInternal(pointToInsert, node.rt, level + 1);
                    if(node.rt.rect == null){
                        node.rt.rect = new RectHV(node.rect.xmin(), node.y,
                                node.rect.xmax(), node.rect.ymax());
                    }
                }
            }

        } else if (level % 2 != 0) {//Vertical partition line
            if (pointToInsert.x() < node.x) {//Traverse in left area of partition
                node.lb = insertInternal(pointToInsert, node.lb, level + 1);
                if(node.lb.rect == null){
                    node.lb.rect = new RectHV(node.rect.xmin(), node.rect.ymin(),
                            node.x, node.rect.ymax());
                }
            } else {//Traverse in right area of partition
                if (!node.point.equals(pointToInsert)) {
                    node.rt = insertInternal(pointToInsert, node.rt, level + 1);
                    if(node.rt.rect == null){
                        node.rt.rect = new RectHV(node.x, node.rect.ymin(),
                                node.rect.xmax(), node.rect.ymax());
                    }
                }
            }
        }
        node.size = 1 + rechnenSize(node.lb) + rechnenSize(node.rt);
        return node;
    }

    public boolean contains(Point2D p) {
        return containsInternal(p, root, 1);
    }

    private boolean containsInternal(Point2D pointToSearch, Node node, int level) {
        if (node == null) {
            return false;
        }
        if (level % 2 == 0) {//Horizontal partition line
            if (pointToSearch.y() < node.y) {
                return containsInternal(pointToSearch, node.lb, level + 1);
            } else {
                if (node.point.equals(pointToSearch)) {
                    return true;
                }
                return containsInternal(pointToSearch, node.rt, level + 1);
            }
        } else {//Vertical partition line
            if (pointToSearch.x() < node.x) {
                return containsInternal(pointToSearch, node.lb, level + 1);
            } else {
                if (node.point.equals(pointToSearch)) {
                    return true;
                }
                return containsInternal(pointToSearch, node.rt, level + 1);
            }
        }

    }

    public void draw() {
        StdDraw.clear();
        drawInternal(root, 1);
    }

    private void drawInternal(Node node, int level) {
        if (node == null) {
            return;
        }
        StdDraw.setPenColor(StdDraw.BLACK);
        StdDraw.setPenRadius(0.02);
        node.point.draw();
        double sx = node.rect.xmin();
        double ex = node.rect.xmax();
        double sy = node.rect.ymin();
        double ey = node.rect.ymax();
        StdDraw.setPenRadius(0.01);
        if (level % 2 == 0) {
            StdDraw.setPenColor(StdDraw.BLUE);
            sy = ey = node.y;
        } else {
            StdDraw.setPenColor(StdDraw.RED);
            sx = ex = node.x;
        }
        StdDraw.line(sx, sy, ex, ey);
        drawInternal(node.lb, level + 1);
        drawInternal(node.rt, level + 1);
    }

    /**
     * Find the points which lies in the rectangle as parameter
     * @param rect
     * @return
     */
    public Iterable<Point2D> range(RectHV rect) {
        List<Point2D> resultList = new ArrayList<Point2D>();
        rangeInternal(root, rect, resultList);
        return resultList;
    }

    private void rangeInternal(Node node, RectHV rect, List<Point2D> resultList) {
        if (node == null) {
            return;
        }
        if (node.rect.intersects(rect)) {
            if (rect.contains(node.point)) {
                resultList.add(node.point);
            }
            rangeInternal(node.lb, rect, resultList);
            rangeInternal(node.rt, rect, resultList);
        }

    }

    public Point2D nearest(Point2D p) {
        if(root == null){
            return null;
        }
        Champion champion = new Champion(root.point,Double.MAX_VALUE);
        return nearestInternal(p, root, champion, 1).champion;
    }

    private Champion nearestInternal(Point2D targetPoint, Node node,
            Champion champion, int level) {
        if (node == null) {
            return champion;
        }
        double dist = targetPoint.distanceSquaredTo(node.point);
        int newLevel = level + 1;
        if (dist < champion.championDist) {
            champion.champion = node.point;
            champion.championDist = dist;
        }
        boolean goLeftOrBottom = false;
        //We will decide which part to be visited first, based upon in which part point lies.
        //If point is towards left or bottom part, we traverse in that area first, and later on decide
        //if we need to search in other part too.
        if(level % 2 == 0){
            if(targetPoint.y() < node.y){
                goLeftOrBottom = true;
            }
        } else {
            if(targetPoint.x() < node.x){
                goLeftOrBottom = true;
            }
        }
        if(goLeftOrBottom){
            nearestInternal(targetPoint, node.lb, champion, newLevel);
            Point2D orientationPoint = createOrientationPoint(node.x,node.y,targetPoint,level);
            double orientationDist = orientationPoint.distanceSquaredTo(targetPoint);
            //We will search on the other part only, if the point is very near to partitioned line
            //and champion point found so far is far away from the partitioned line.
            if(orientationDist < champion.championDist){
                nearestInternal(targetPoint, node.rt, champion, newLevel);
            }
        } else {
            nearestInternal(targetPoint, node.rt, champion, newLevel);
            Point2D orientationPoint = createOrientationPoint(node.x,node.y,targetPoint,level);
            //We will search on the other part only, if the point is very near to partitioned line
            //and champion point found so far is far away from the partitioned line.
            double orientationDist = orientationPoint.distanceSquaredTo(targetPoint);
            if(orientationDist < champion.championDist){
                nearestInternal(targetPoint, node.lb, champion, newLevel);
            }

        }
        return champion;
    }
    /**
     * Returns the point from a partitioned line, which can be directly used to calculate
     * distance between partitioned line and the target point for which neighbours are to be searched.
     * @param linePointX
     * @param linePointY
     * @param targetPoint
     * @param level
     * @return
     */
    private Point2D createOrientationPoint(double linePointX, double linePointY, Point2D targetPoint, int level){
        if(level % 2 == 0){
            return new Point2D(targetPoint.x(),linePointY);
        } else {
            return new Point2D(linePointX,targetPoint.y());
        }
    }

    private static class Champion{
        public Point2D champion;
        public double championDist;
        public Champion(Point2D c, double d){
            champion = c;
            championDist = d;
        }
    }

    public static void main(String[] args) {
        String filename = "/home/raman/Downloads/kdtree/circle100.txt";
        In in = new In(filename);
        KdTree kdTree = new KdTree();
        while (!in.isEmpty()) {
            double x = in.readDouble();
            double y = in.readDouble();
            Point2D p = new Point2D(x, y);
            kdTree.insert(p);
        }
        // kdTree.print();
        System.out.println(kdTree.size());
        kdTree.draw();
        System.out.println(kdTree.nearest(new Point2D(0.4, 0.5)));
        System.out.println(new Point2D(0.7, 0.4).distanceSquaredTo(new Point2D(0.9,0.5)));
        System.out.println(new Point2D(0.7, 0.4).distanceSquaredTo(new Point2D(0.9,0.4)));

    }
}



回答9:


package kdtree;

class KDNode{
    KDNode left;
    KDNode right;
    int []data;

    public KDNode(){
        left=null;
        right=null;
    }

    public KDNode(int []x){
        left=null;
        right=null;
        data = new int[2];
        for (int k = 0; k < 2; k++)
            data[k]=x[k];
    }
}
class KDTreeImpl{
    KDNode root;
    int cd=0;
    int DIM=2;

    public KDTreeImpl() {
        root=null;
    }

    public boolean isEmpty(){
        return root == null;
    }

    public void insert(int []x){
        root = insert(x,root,cd);
    }
    private KDNode insert(int []x,KDNode t,int cd){
        if (t == null)
            t = new KDNode(x);
        else if (x[cd] < t.data[cd])
            t.left = insert(x, t.left, (cd+1)%DIM);
        else
            t.right = insert(x, t.right, (cd+1)%DIM);
        return t;
    }

    public boolean search(int []data){
        return search(data,root,0);
    }

    private boolean search(int []x,KDNode t,int cd){
        boolean found=false;
        if(t==null){
            return false;
        }
        else {
            if(x[cd]==t.data[cd]){
                if(x[0]==t.data[0] && x[1]==t.data[1]) 
                return true;
            }else if(x[cd]<t.data[cd]){
                found = search(x,t.left,(cd+1)%DIM);
            }else if(x[cd]>t.data[cd]){
                found = search(x,t.right,(cd+1)%DIM);
            }
            return found;
        }
    }

    public void inorder(){
        inorder(root);
    }
    private void inorder(KDNode r){
        if (r != null){
            inorder(r.left);
            System.out.print("("+r.data[0]+","+r.data[1] +") ");
            inorder(r.right);
        }
    }
    public void preorder() {
        preorder(root);
    }
    private void preorder(KDNode r){
        if (r != null){
            System.out.print("("+r.data[0]+","+r.data[1] +") ");
            preorder(r.left);             
            preorder(r.right);
        }
    }
    /* Function for postorder traversal */
    public void postorder() {
        postorder(root);
    }
    private void postorder(KDNode r) {
        if (r != null){
            postorder(r.left);             
            postorder(r.right);
            System.out.print("("+r.data[0]+","+r.data[1] +") ");
        }
    }
}
public class KDTree {

    /**
     * @param args the command line arguments
     */
    public static void main(String[] args) {
        // TODO code application logic here
        KDTreeImpl kdt = new KDTreeImpl();
        int x[] = new int[2];
        x[0] = 30;
        x[1] = 40;
        kdt.insert(x);

        x[0] = 5;
        x[1] = 25;
        kdt.insert(x);

        x[0] = 10;
        x[1] = 12;
        kdt.insert(x);

        x[0] = 70;
        x[1] = 70;
        kdt.insert(x);

        x[0] = 50;
        x[1] = 30;
        kdt.insert(x);
        System.out.println("Input Elements");
        System.out.println("(30,40) (5,25) (10,12) (70,70) (50,30)\n\n");
        System.out.println("Printing KD Tree in Inorder");
        kdt.inorder();
        System.out.println("\nPrinting KD Tree in PreOder");
        kdt.preorder();
        System.out.println("\nPrinting KD Tree in PostOrder");
        kdt.postorder();
        System.out.println("\nsearching...............");
        x[0]=40;x[1]=40;
        System.out.println(kdt.search(x));
    }
}


来源:https://stackoverflow.com/questions/253767/kdtree-implementation-in-java

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!