问题
I have what may be a very simplistic question on the KEST function in Spatstat.KEST graph output I'm using the KEST function in Spatstat to assess spatial randomness in a dataset. I have uploaded lat and long values spread over London and converted them to a PPP object, using the ripras function to specify the spatial domain. When I run my KEST analysis on my ppp, and plot the graph, I end up with an r value on the x, but although I know this is a distance measurement, I don't know what units it's using. I get this summary output:
Planar point pattern: 113 points
Average intensity 407.9378 points per square unit
Coordinates are given to 9 decimal places
Window: polygonal boundary
single connected closed polygon with 14 vertices
enclosing rectangle: [-0.5532963, 0.3519148] x [51.2901, 51.7022] units
Window area = 0.277003 square units
with the max r on the x axis being 0.1 units, and the K(r) on the y axis being 0.04. How do I figure out what unit of distance these equate to?
回答1:
Your lat,lon coordinates correspond to points on a sphere (or ellipsoid or whatever) used as a model for planet Earth. Essentially, spatstat assumes you are using coordinates projected on a flat map. This conversion could be done with e.g. the sp
package (using Buckingham Palace as an example):
library(sp)
lat = c(51.501476)
lon = c(-0.140634)
xy = data.frame(lon, lat)
coordinates(xy) <- c("lon", "lat")
proj4string(xy) <- CRS("+proj=longlat +datum=WGS84")
NE <- spTransform(xy, CRS("+proj=utm +zone=30 ellps=WGS84"))
NE <- as.data.frame(NE)
The result is a data.frame
with projected coordinates in Easting, Northing in metres. Then you can continue your analysis from there. To assign a unit label like "m"
for prettier labels in figures use the function unitname
on your ppp
object (assuming the object is called X
): unitname(X) <- "m"
回答2:
If the function is able to accept geographic coordinates, then it is using a great circle equation to calculate distance. This normally results in units that are in Kilometers.
It is not very good practice to perform PPA on non-projected data. If possible, you should project your data into a coordinate system that is in distance units. I believe that most of the functions in spatstat use Euclidean distance, which is quite inappropriate for projection units in decimal degrees. Since there is not a latlong argument in the Kest function, I do not believe that your results are valid.
回答3:
The K function itself (i.e. the theoretical K-function, not just the computer code) assumes that the space is flat rather than curved.
This would probably be a reasonable approximation in your case (points scattered over a few dozen kilometres) but not for a point pattern scattered over a continent. That is, in general the planar K-function should not be used for point patterns on a sphere.
The other posts are correct. The Kest
function expects the coordinates to be given in an isometric coordinate system. You just need to express the spatial locations in a coordinate system in which the x and y coordinates are measured in the same distance units. Longitude and latitude are not measured in the same distance units because one degree (say) of longitude does not represent the same distance as one degree of latitude. Ege Rubak's example using spTransform
is probably the best way to go.
来源:https://stackoverflow.com/questions/35873254/unit-length-in-spatstat