射频常见指标

为君一笑 提交于 2019-12-04 06:04:58

内容简介
1、Modulation/Switching Spectrum

2、SEM

3、EVM(误差矢量)

4、为何发射信号的信噪比并不重要

5、EVM与ACPR/ACLR的关系

一、Modulation/Switching Spectrum
回到GSM全球移动通信系统,Modulation Spectrum(调制谱)和Switching Spectrum(切换谱/开关谱)也是扮演了邻道泄漏比(ACLR)相似的角色;

不同的是它们的测量带宽并不是GSM信号的占用带宽;

从定义上看,可以认为调制谱是衡量同步系统之间的干扰,而切换谱是衡量非同步系统之间的干扰(事实上如果不对信号做gating,切换谱一定是会把调制谱淹没掉的);

这就牵涉到另一个概念:GSM系统中,各小区之间是不同步的,虽然它用的是TDMA;而相比之下,TD-SCDMA和之后的TD-LTE,小区之间是同步的(那个飞碟形状或者球头的GPS天线永远是TDD系统摆脱不了的桎梏) ;

因为小区间不同步,所以A小区上升沿/下降沿的功率泄漏可能落到B小区的payload部分,所以我们用切换谱来衡量此状态下发射机对邻信道的干扰;

而在整个577us的GSM timeslot里,上升沿/下降沿的占比毕竟很少,多数时候两个相邻小区的payload部分会在时间上交叠,评估这种情况下发射机对邻信道的干扰就可以参考调制谱;

二、SEM (Spectrum Emission Mask)射频
这是一个“带内指标”,与spurious emission区分开来,后者在广义上是包含了SEM的,但是着重看的其实是发射机工作频段之外的频谱泄漏,其引入也更多的是从EMC的角度;

SEM是提供一个“频谱模版”,然后在测量发射机带内频谱泄漏的时候,看有没有超出模版限值的点;

可以说它与ACLR有关系,但是又不相同;

ACLR是考虑泄漏到邻近信道中的平均功率,所以它以信道带宽为测量带宽,它体现的是发射机在邻近信道内的“噪声底”;

SEM反映的是以较小的测量带宽(往往100kHz到1MHz)捕捉在邻近频段内的超标点,体现的是“以噪声底为基础的杂散发射”;

如果用频谱仪扫描SEM,可以看到邻信道上的杂散点会普遍的高出ACLR均值,所以如果ACLR指标本身没有余量,SEM就很容易超标;

反之SEM超标并不一定意味着ACLR不良,有一种常见的现象就是有LO的杂散或者某个时钟与LO调制分量(往往带宽很窄,类似点频)串入发射机链路,这时候即便ACLR很好,SEM也可能超标。

三、EVM(误差矢量)
EVM是一个矢量值,也就是说它有幅度和角度,它衡量的是“实际信号与理想信号的误差”,这个量度可以有效的表达发射信号的“质量”——实际信号的点距离理想信号越远,误差就越大,EVM的模值就越大;

四、为何发射信号的信噪比并不重要
第一是发射信号的SNR往往远远高于接收机解调所需要的SNR;

第二是我们计算接收灵敏度时参考的是接收机最恶劣的情况,即在经过大幅度空间衰落之后,发射机噪声早已淹没在自然噪声底之下,而有用信号也被衰减到接收机的解调门限附近;

但是发射机的“固有信噪比”在某些情况下是需要被考虑的,譬如近距离无线通信,典型的如802.11系列;

802.11系列演进到802.11ac的时候,已经引入了256QAM的调制,对于接收机而言,即便不考虑空间衰落,光是解调这样高阶的正交调制信号就已经需要很高的信噪比,EVM越差,SNR就越差,解调难度就越高;

做802.11系统的工程师,往往用EVM来衡量Tx线性度;而做3GPP系统的工程师,则喜欢用ACLR/ACPR/Spectrum来衡量Tx线性性能。

从起源上讲,3GPP是蜂窝通信的演进道路,从一开始就不得不关注邻信道、隔信道(adjacent channel, alternative channel)的干扰。换句话说,干扰是影响蜂窝通信速率的第一大障碍,所以3GPP在演进的过程中,总是以“干扰最小化”为目标的:GSM时代的跳频,UMTS时代的扩频,LTE时代RB概念的引入,都是如此;

而802.11系统是固定无线接入的演进,它是秉承TCP/IP协议精神而来,以“尽最大能力的服务”为目标,802.11中经常会有时分或者跳频的手段来实现多用户共存,而布网则比较灵活(毕竟以局域网为主),信道宽度也灵活可变。总的来说它对干扰并不敏感(或者说容忍度比较高);

通俗的讲,就是蜂窝通信的起源是打电话,打不通电话用户会去电信局砸场子;802.11的起源是局域网,网络不好大概率是先耐着性子等等(其实这时候设备是在作纠错和重传);

这就决定了3GPP系列必然以ACLR/ACPR一类“频谱再生”性能为指标,而802.11系列则可以以牺牲速率来适应网络环境;

具体说来,“以牺牲速率来适应网络环境”,就是指的802.11系列中以不同的调制阶数来应对传播条件:当接收机发现信号差,就立即通知对面的发射机降低调制阶数,反之亦然。前面提到过,802.11系统中SNR与EVM相关很大,很大程度上EVM降低可以提高SNR。这样我们就有两种途径改善接收性能:一是降低调制阶数,从而降低解调门限;二是降低发射机EVM,使得信号SNR提高;

因为EVM与接收机解调效果密切相关,所以802.11系统中以EVM来衡量发射机性能(类似的,3GPP定义的蜂窝系统中,ACPR/ACLR是主要影响网络性能的指标);又因为发射机对EVM的恶化主要因为非线性引起(譬如PA的AM-AM失真),所以EVM通常作为衡量发射机线性性能的标志;

五、EVM与ACPR/ACLR的关系
很难定义EVM与ACPR/ACLR的定量关系,从放大器的非线性来看,EVM与ACPR/ACLR应该是正相关的:放大器的AM-AM、AM-PM失真会扩大EVM,同时也是ACPR/ACLR的主要来源;

但是EVM与ACPR/ACLR并不总是正相关,我们这里可以找到一个很典型的例子:数字中频中常用的Clipping,即削峰。Clipping是削减发射信号的峰均比(PAR),峰值功率降低有助于降低通过PA之后的ACPR/ACLR;

但是Clipping同时会损害EVM,因为无论是限幅(加窗)还是用滤波器方法,都会对信号波形产生损伤,因而增大EVM;

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!