How to accumulate gradients in tensorflow?

怎甘沉沦 提交于 2019-12-04 01:37:28

Let's walk through the code proposed in one of the answers you liked to:

## Optimizer definition - nothing different from any classical example
opt = tf.train.AdamOptimizer()

## Retrieve all trainable variables you defined in your graph
tvs = tf.trainable_variables()
## Creation of a list of variables with the same shape as the trainable ones
# initialized with 0s
accum_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in tvs]
zero_ops = [tv.assign(tf.zeros_like(tv)) for tv in accum_vars]

## Calls the compute_gradients function of the optimizer to obtain... the list of gradients
gvs = opt.compute_gradients(rmse, tvs)

## Adds to each element from the list you initialized earlier with zeros its gradient (works because accum_vars and gvs are in the same order)
accum_ops = [accum_vars[i].assign_add(gv[0]) for i, gv in enumerate(gvs)]

## Define the training step (part with variable value update)
train_step = opt.apply_gradients([(accum_vars[i], gv[1]) for i, gv in enumerate(gvs)])

This first part basically adds new variables and ops to your graph which will allow you to

  1. Accumulate the gradient with ops accum_ops in (the list of) variable accum_vars
  2. Update the model weights with ops train_step

Then, to use it when training, you have to follow these steps (still from the answer you linked):

## The while loop for training
while ...:
    # Run the zero_ops to initialize it
    sess.run(zero_ops)
    # Accumulate the gradients 'n_minibatches' times in accum_vars using accum_ops
    for i in xrange(n_minibatches):
        sess.run(accum_ops, feed_dict=dict(X: Xs[i], y: ys[i]))
    # Run the train_step ops to update the weights based on your accumulated gradients
    sess.run(train_step)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!