get the acceleration without gravity

谁说我不能喝 提交于 2019-12-03 18:23:34

It is not possible to get the acceleration directly without gravity.

You can use a high-pass filter, like on the Android Reference Page, in the Sensor.TYPE_ACCELEROMETER section:

public void onSensorChanged(SensorEvent event) {
      // alpha is calculated as t / (t + dT)
      // with t, the low-pass filter's time-constant
      // and dT, the event delivery rate

      final float alpha = 0.8;

      gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
      gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
      gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];

      linear_acceleration[0] = event.values[0] - gravity[0];
      linear_acceleration[1] = event.values[1] - gravity[1];
      linear_acceleration[2] = event.values[2] - gravity[2];
 }
FranMowinckel

Duplicate question: android remove gravity from accelerometer readings

The answer is using Sensor.TYPE_LINEAR_ACCELERATION (API >= 9 about 99% of all android devices).

The answer is here: http://developer.android.com/reference/android/hardware/SensorEvent.html#values

Quote:

In particular, the force of gravity is always influencing the measured acceleration: Ad = -g - ∑F / mass

For this reason, when the device is sitting on a table (and obviously not accelerating), the accelerometer reads a magnitude of g = 9.81 m/s^2

Similarly, when the device is in free-fall and therefore dangerously accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a magnitude of 0 m/s^2.

It should be apparent that in order to measure the real acceleration of the device, the contribution of the force of gravity must be eliminated. This can be achieved by applying a high-pass filter. Conversely, a low-pass filter can be used to isolate the force of gravity.

public void onSensorChanged(SensorEvent event)
 {
      // alpha is calculated as t / (t + dT)
      // with t, the low-pass filter's time-constant
      // and dT, the event delivery rate

      final float alpha = 0.8;

      gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
      gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
      gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];

      linear_acceleration[0] = event.values[0] - gravity[0];
      linear_acceleration[1] = event.values[1] - gravity[1];
      linear_acceleration[2] = event.values[2] - gravity[2];
 }

Why not to subtract the gravity values directly from the observed acceleration using Android sensor. I think it is easier way. If any specific reason is there behind the use of high pass filter, please let me know with some link to supporting document or technical paper. Thanks Rajiv

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!