Spark accumulableCollection does not work with mutable.Map

倖福魔咒の 提交于 2019-12-03 18:23:00

Using accumulableCollection seems like overkill for your problem, as the following demonstrates:

import org.apache.spark.{AccumulableParam, Accumulable, SparkContext, SparkConf}

import scala.collection.mutable

case class Employee(id:String, name:String, dept:String)

val conf = new SparkConf().setAppName("Employees") setMaster ("local[4]")
val sc = new SparkContext(conf)

implicit def mapAccum =
    new AccumulableParam[mutable.Map[String,Employee], Employee]
{
  def addInPlace(t1: mutable.Map[String,Employee],
                 t2: mutable.Map[String,Employee])
      : mutable.Map[String,Employee] = {
    t1 ++= t2
    t1
  }
  def addAccumulator(t1: mutable.Map[String,Employee], e: Employee)
      : mutable.Map[String,Employee] = {
    t1 += (e.id -> e)
    t1
  }
  def zero(t: mutable.Map[String,Employee])
      : mutable.Map[String,Employee] = {
    mutable.Map[String,Employee]()
  }
}

val empAccu = sc.accumulable(mutable.Map[String,Employee]())

val employees = List(
  Employee("10001", "Tom", "Eng"),
  Employee("10002", "Roger", "Sales"),
  Employee("10003", "Rafael", "Sales"),
  Employee("10004", "David", "Sales"),
  Employee("10005", "Moore", "Sales"),
  Employee("10006", "Dawn", "Sales"),
  Employee("10007", "Stud", "Marketing"),
  Employee("10008", "Brown", "QA")
)

System.out.println("employee count " + employees.size)

sc.parallelize(employees).foreach(e => {
  empAccu += e
})

println("empAccumulator size " + empAccu.value.size)
empAccu.value.foreach(entry =>
  println("emp id = " + entry._1 + " name = " + entry._2.name))

While this is poorly documented right now, the relevant test in the Spark codebase is quite illuminating.

Edit: It turns out that using accumulableCollection does have value: you don't need to define an AccumulableParam and the following works. I'm leaving both solutions in case they're useful to people.

case class Employee(id:String, name:String, dept:String)

val conf = new SparkConf().setAppName("Employees") setMaster ("local[4]")
val sc = new SparkContext(conf)

val empAccu = sc.accumulableCollection(mutable.HashMap[String,Employee]())

val employees = List(
  Employee("10001", "Tom", "Eng"),
  Employee("10002", "Roger", "Sales"),
  Employee("10003", "Rafael", "Sales"),
  Employee("10004", "David", "Sales"),
  Employee("10005", "Moore", "Sales"),
  Employee("10006", "Dawn", "Sales"),
  Employee("10007", "Stud", "Marketing"),
  Employee("10008", "Brown", "QA")
)

System.out.println("employee count " + employees.size)

sc.parallelize(employees).foreach(e => {
  // notice this is different from the previous solution
  empAccu += e.id -> e
})

println("empAccumulator size " + empAccu.value.size)
empAccu.value.foreach(entry =>
  println("emp id = " + entry._1 + " name = " + entry._2.name))

Both solutions tested using Spark 1.0.2.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!