Compare data in two RDD in spark

|▌冷眼眸甩不掉的悲伤 提交于 2019-12-03 17:36:51
Sean Owen

You need to key the data in each RDD so that there is something to join records on. Have a look at groupBy for example. Then you join the resulting RDDs. For each key, you get the matching values in both. If you are interested in finding the unmatched keys, use leftOuterJoin, like this:

// Returns the entries in userRDD that have no corresponding key in empRDD.
def nonEmp(userRDD: RDD[(String, String)], empRDD: RDD[(String, String)]) = {
  userRDD.leftOuterJoin(empRDD).collect {
    case (name, (age, None)) => name -> age
  }
}

Of course the above solutions are complete and correct! Just one proposal , if and only if the RDDs are synchronized(Same rows have the same keys). You can use a distributed solution and exploit parallelism by using only spark transformations via the following tested solution:

def distrCompare(left: RDD[(Int,Int)], right: RDD[(Int,Int)]): Boolean = {
  val rdd1 = left.join(right).map{case(k, (lv,rv)) => (k,lv-rv)}
  val rdd2 = rdd1.filter{case(k,v)=>(v!=0)}
  var equal = true;
  rdd2.map{
    case(k,v)=> if(v!=0) equal = false
  }
  return equal
}

You can choose the number of partitions in "join".

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!