As far as I understand the wording in 5.2.9 Static cast, the only time the result of a void*
-to-object-pointer conversion is allowed is when the void*
was a result of the inverse conversion in the first place.
Throughout the standard there is a bunch of references to the representation of a pointer, and the representation of a void
pointer being the same as that of a char
pointer, and so on, but it never seems to explicitly say that casting an arbitrary void
pointer yields a pointer to the same location in memory, with a different type, much like type-punning is undefined where not punning back to an object's actual type.
So while malloc
clearly returns the address of suitable memory and so on, there does not seem to be any way to actually make use of it, portably, as far as I have seen.
C++0x standard draft has in 5.2.9/13:
An rvalue of type “pointer to cv1 void” can be converted to an rvalue of type “pointer to cv2 T,” where T is an object type and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. The null pointer value is converted to the null pointer value of the destination type. A value of type pointer to object converted to “pointer to cv void” and back, possibly with different cv-qualification, shall have its original value.
But also note that the cast doesn't necessarily result in a valid object:
std::string* p = static_cast<std::string*>(malloc(sizeof(*p)));
//*p not a valid object
C++03, §20.4.6p2
The contents are the same as the Standard C library header <stdlib.h>, with the following changes: [list of changes that don't apply here]
C99, §7.20.3.3p2-3
(Though C++03 is based on C89, I only have C99 to quote. However, I believe this section is semantically unchanged. §7.20.3p1 may also be useful.)
The malloc function allocates space for an object whose size is specified by size and whose value is indeterminate.
The malloc function returns either a null pointer or a pointer to the allocated space.
From these two quotes, malloc allocates an uninitialized object and returns a pointer to it, or returns a null pointer. A pointer to an object which you have as a void pointer can be converted to a pointer to that object (first sentence of C++03 §5.2.9p13, mentioned in the previous answer).
This should be less "handwaving", which you complained of, but someone might argue I'm "interpreting" C's definition of malloc as I wish, by, for example, noticing C says "to the allocated space" rather than "to the allocated object". To those people: first realize that "space" and "object" are synonyms in C, and second please file a defect report with the standard committees, because not even I am pedantic enough to continue. :)
I'll give you the benefit of the doubt and believe you got tripped up in the cross-references, cross-interpretation, and sometimes-confused integration between the standards, rather than "space" vs "object".
Throughout the standard there is a bunch of references to the representation of a pointer, and the representation of a void pointer being the same as that of a char pointer,
Yes, indeed.
So while malloc clearly returns the address of suitable memory and so on, there does not seem to be any way to actually make use of it, portably, as far as I have seen.
Of course there is:
void *vp = malloc (1); char *cp; memcpy (&cp, &vb, sizeof cp); *cp = ' ';
There is one tiny problem : it does not work for any other type. :(
来源:https://stackoverflow.com/questions/2614392/what-wording-in-the-c-standard-allows-static-castnon-void-typemallocn