问题
For permutations, given N
and k
, I have a function that finds the k
th permutation of N
in lexicographic order. Also, given a permutation perm
, I have a function that finds the lexicographic index of the permutation among all permutations of N
. To do this, I used the "factorial decomposition" as suggested in this answer.
Now I want to do the same thing for integer partitions of N
. For example, for N=7
, I want to be able to back and forth between the index (left) and the partition (right):
0 ( 7 )
1 ( 6 1 )
2 ( 5 2 )
3 ( 5 1 1 )
4 ( 4 3 )
5 ( 4 2 1 )
6 ( 4 1 1 1 )
7 ( 3 3 1 )
8 ( 3 2 2 )
9 ( 3 2 1 1 )
10 ( 3 1 1 1 1 )
11 ( 2 2 2 1 )
12 ( 2 2 1 1 1 )
13 ( 2 1 1 1 1 1 )
14 ( 1 1 1 1 1 1 1 )
I've tried a few things. The best I came up with was
sum = 0;
for (int i=0; i<length; ++i)
sum += part[i]*i;
return sum;
which gives the following:
0 0( 7 )
1 1( 6 1 )
2 2( 5 2 )
3 3( 5 1 1 )
3 4( 4 3 )
4 5( 4 2 1 )
6 6( 4 1 1 1 )
5 7( 3 3 1 )
6 8( 3 2 2 )
7 9( 3 2 1 1 )
10 10( 3 1 1 1 1 )
9 11( 2 2 2 1 )
11 12( 2 2 1 1 1 )
15 13( 2 1 1 1 1 1 )
21 14( 1 1 1 1 1 1 1 )
This doesn't quite work, but seems to be on the right track. I came up with this because it sort of counts how many times I have to move a number down (like 6,3,2
goes to 6,3,1,1
). I can't see how to fix it, though, because I don't know how to account for when things have to get recombined (like 6,3,1,1
goes to 6,2,2
).
回答1:
Think about why the "factorial decomposition" works for permutations, and the same logic works here. However, instead of using k!
for the number of permutations of k
objects, you must use the partition function p(n,k)
for the number of partitions of n
with largest part at most k
. For n=7
, these numbers are:
k | p(7,k)
0 | 0
1 | 1
2 | 4
3 | 8
4 | 11
5 | 13
6 | 14
7 | 15
To get the lexicographic index of (3,2,1,1)
, for example, you compute
p(3+2+1+1) - [ p(3+2+1+1,3-1) + p(2+1+1,2-1) + p(1+1,1-1) + p(1,1-1) ] - 1
which is 15 - [4 + 1 + 0 + 0] - 1 = 9
. Here you're computing the number of partitions of 7 with largest part less than 3 plus the number of partitions of 4 with largest part less than 2 plus ... The same logic can reverse this. In C, the (untested!) functions are:
int
rank(int part[], int size, int length) {
int r = 0;
int n = size;
int k;
for (int i=0; i<length; ++i) {
k = part[i];
r += numPar(n,k-1);
n -= k;
}
return numPar(size)-r;
}
int
unrank (int n, int size, int part[]) {
int N = size;
n = numPar(N)-n-1;
int length = 0;
int k,p;
while (N>0) {
for (k=0; k<N; ++k) {
p = numPar(N,k);
if (p>n) break;
}
parts[length++] = k;
N -= k;
n -= numPar(N,k-1);
}
return length;
}
Here numPar(int n)
should return the number of partitions of n
, and numPar(int n, int k)
should return the number of partitions of n
with largest part at most k
. You can write these yourself using recurrence relations.
回答2:
#include <stdio.h>
// number of combinations to divide by the number of k below n
int partition(int n, int k){
int p,i;
if(n<0) return 0;
if(n<2 || k==1) return 1;
for(p=0,i=1;i<=k;i++){
p+=partition(n-i,i);
}
return p;
}
void part_nth_a(int n, int k, int nth){
if(n==0)return;
if(n== 1 || n==k && nth == 0){
printf("%d ", n);
return ;
}
int i, diff;
for(i=0;i<k;++i){
diff = partition(n, k-i) - partition(n, k-i-1);
if(nth < diff){
printf("%d ", k-i);
n -= (k-i);
if(diff == 1)
part_nth_a(n, k-i, 0);
else
part_nth_a(n, k-i, nth);
return;
}
nth -= diff;
}
}
void part_nth(int n, int nth){
if(nth == 0){
printf("%d ", n);
return ;
}
int i, j, numOfPart;
for(i=1;i<n;++i){
numOfPart = n-i < i ? partition(i, n-i) : partition(i, i);
if(nth <= numOfPart)
break;
nth -= numOfPart;
}
printf("%d ", n-i);
if(n-i < i)
part_nth_a(i, n-i, nth-1);
else
part_nth_a(i, i, nth-1);
}
int main(){
int n = 7;
int i, numOfPart = partition(n, n);
for(i=0;i<numOfPart;++i){
printf("%2d ( ", i);
part_nth(n, i);
printf(")\n");
}
return 0;
}
来源:https://stackoverflow.com/questions/21293906/find-the-lexicographic-order-of-an-integer-partition