Pandas compare each row with all rows in data frame and save results in list for each row

六月ゝ 毕业季﹏ 提交于 2019-12-03 08:54:38

The first step would be to find the indices that match the condition for a given name. Since partial_ratio only takes strings, we apply it to the dataframe:

name = 'dog'
df.apply(lambda row: (partial_ratio(row['name'], name) >= 85), axis=1)

We can then use enumerate and list comprehension to generate the list of true indices in the boolean array:

matches = df.apply(lambda row: (partial_ratio(row['name'], name) >= 85), axis=1)
[i for i, x in enumerate(matches) if x]

Let's put all this inside a function:

def func(name):
    matches = df.apply(lambda row: (partial_ratio(row['name'], name) >= 85), axis=1)
    return [i for i, x in enumerate(matches) if x]

We can now apply the function to the entire dataframe:

df.apply(lambda row: func(row['name']), axis=1)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!