How to predict x values from a linear model (lm)

人盡茶涼 提交于 2019-12-03 06:21:31

Since this is a typical problem in chemistry (predict values from a calibration), package chemCal provides inverse.predict. However, this function is limited to "univariate model object[s] of class lm or rlm with model formula y ~ x or y ~ x - 1."

x <- c(0, 40, 80, 120, 160, 200)
y <- c(6.52, 5.10, 4.43, 3.99, 3.75, 3.60)
plot(x,y)
model <- lm(y ~ x)
abline(model)
require(chemCal)
ynew <- c(5.5, 4.5, 3.5)
xpred<-t(sapply(ynew,function(y) inverse.predict(model,y)[1:2]))
#  Prediction Standard Error
#[1,] 31.43007   -38.97289     
#[2,] 104.7669   -36.45131     
#[3,] 178.1037   -39.69539
points(xpred[,1],ynew,col="red")

Warning: This function is quite slow and not suitable, if you need to inverse.predict a large number of values.

If I remember correctly, the neg. SEs occur because the function expects the slope to be always positive. Absolute values of SE should still be correct.

I think you just have to use the algebra to invert y=a+b*x to x=(y-a)/b:

cc <- coef(model)
(xnew <- (ynew-cc[1])/cc[2])
# [1]  31.43007 104.76689 178.10372

plot(x,y
abline(model)
points(xnew,ynew,col=2)

Looking at your 'data' here, I think a nonlinear regression might be better ...

If your relationship is nonmonotone or if you have multiple predictor values then there can be multiple x-values for a given y-value and you need to decide how to deal with that.

One option that could be slow (and may be the method used in the other packages mentioned) is to use the uniroot function:

x <- runif(100, min=-1,max=2)
y <- exp(x) + rnorm(100,0,0.2)

fit <- lm( y ~ poly(x,3), x=TRUE )
(tmp <- uniroot( function(x) predict(fit, data.frame(x=x)) - 4, c(-1, 2) )$root)
library(TeachingDemos)
plot(x,y)
Predict.Plot(fit, 'x', data=data.frame(x=x), add=TRUE, ref.val=tmp)

You could use the TkPredict function from the TeachingDemos package to eyeball a solution.

Or you could get a fairly quick approximation by generating a lot of predicted points, then feeding them to the approxfun or splinfun functions to produce the approximations:

tmpx <- seq(min(x), max(x), length.out=250)
tmpy <- predict(fit, data.frame(x=tmpx) )
tmpfun <- splinefun( tmpy, tmpx )
tmpfun(4)
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!