GRE数学中个位数规律中的障眼法

假装没事ソ 提交于 2019-12-03 04:19:27

很多同学在平时练习GRE数学题的过程中经常会碰到考察指数个位数规律的题目。

很多同学也能熟练地运用,比如能随口说出3的n次方的规律是3971,8的n次方的规律是8426等等。但是!在考试中还是有一些题目会让熟悉这个规律的同学做错题目,这类题目就是看似是在考察个位数规律,实际上并不是。

接下来,我会用几个例子来帮助大家分析。

1

3的283次方除以5的余数是多少?

机经回忆版

解析:除以5的话,因为十位和十位数以上的数字肯定能被5整除。

所以这个时候只需要看个位数即可,3的283次方按照之前的规律看的话个位数应该是7,所以除以5余数一定是2。

2

2的32次方除以3的余数是多少?

方法一 机经回忆版

解析:很多同学看到例2的时候就直接去复制例1的做法,totally wrong!因为一个数字除以3不能只看个位数,比如13,23,33除以3的话完全是3个不同的情况。

所以这个题要用其他方法,比如这个题可以用找规律的方法:2的1次方,2的2次方,2的3次方,2的4次方除以3的余数分别是2,1,2,1。

而且往后面继续列举的话依然是这个规律,所以2的32次方除以3的余数就是1。

方法二  真经GRE

用二项式定理(很多同学都会,但是理论上是超GRE考试纲要的),写成(3-1)的32次方,然后展开之后前面的项全是3的倍数,最后剩一个项1就是余数。

3

3的64次方除以8的余数是多少?

机经回忆版

解析:这个题依然可以找余数规律:3,1,3,1无限循环,所以余数是1。

也可以用二项式定理,先转化成9的32次方,然后变成(8+1)的32次方,然后和例2同理,前面的项都是8的倍数,最后剩一个项是1,所以余数是1。

总结:能不能直接用个位数规律要看除数是几,一般除数是2,5的话可以用,其他的话一般不能直接用个位数规律。

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!