Circular Stacked Bar Plot in R

泄露秘密 提交于 2019-12-03 03:34:41
Christie Haskell Marsh

In order to make this work you do have to use geom_rect(). It just isn't possible to modify geom_bar() to do what you need as a polar geom_bar() creates a rose plot. Therefore, in order to have the data plotted inwards rather than outwards, geom_rect() is the only option (that I'm aware of for ggplot2).

I'll highlight the changes that I made first, display the plot, and then at the end I'll include the entire function as modified.

I modified the block of code that computes xmin, xmax, ymin, and ymax as follows:

xmin was:

xmin <- (indexScore - 1) * (binSize + spaceBar) + (indexItem - 1) * (spaceItem + M * (binSize + spaceBar)) + (indexFamily - 1) * (spaceFamily - spaceItem)

xmin is now:

xmin <- (binSize + spaceBar) + (indexItem - 1) * (spaceItem + (binSize + spaceBar)) + (indexFamily - 1) * (spaceFamily - spaceItem)

I removed (indexScore-1) * and M * as these are what position the bars for each score next to each other. In each item we want them at the same x location.

ymin was:

ymin <- affine(1)

ymin is now:

df<-df[with(df, order(family,item,value)), ] df<-ddply(df,.(item),mutate,ymin=c(1,ymax[1:(length(ymax)-1)]))

We want the ymin for each bar in each item to start at the ymax of the bar that is before it. In order to accomplish this I first ordered the data frame so that in each item the order of the values is from lowest to highest. Then, for each item, I set ymin to 1 for the lowest value, and then to the ymax of the previous bar for all other values.

I also made some ascetic changes. In the family labels section I changed y=1.2 to y=1.7 because your item labels are long so the family labels were consequently on top of them. I also added hjust=0.5 to center them and vjust=0 so they aren't so close to the item labels. As a result, this line:

p<-p+ylim(0,outerRadius+0.2)

Is now:

p<-p+ylim(0,outerRadius+0.7)

So the labels fit within the plot region.

Lastly, this line:

familyLabelsDF<-aggregate(xmin~family,data=df,FUN=function(s) mean(s+binSize))

is now:

familyLabelsDF<-aggregate(xmin~family,data=df,FUN=function(s) mean(s+binSize/2))

This makes it so the family labels are centered in each group.

Here is what it looks like:

And here is the entire function (latest version see GitHub):

## =============================================================================
## Polar BarChart
## Original Polar Histogram by Christophe Ladroue
## Source: http://chrisladroue.com/2012/02/polar-histogram-pretty-and-useful/
## Modified from original by Christos Hatzis 3.22.2012 (CH)
## Modified from modified by Christie Haskell 7.25.2014 (CHR)
## =============================================================================
polarBarChart <-
  function(
    df,
    binSize=1,
    spaceBar=0.05,
    spaceItem=0.2,
    spaceFamily=1.2,
    innerRadius=0.3,
    outerRadius=1,
    nguides=3,
    guides=pretty(range(c(0, df$value)), n=nguides, min.n=2),
    alphaStart=-0.3,
    circleProportion=0.8,
    direction="inwards",
    familyLabels=TRUE,
    itemSize=3,
    legLabels=NULL,
    legTitle="Source"){

    require(ggplot2)
    require(plyr)

    # ordering
    df<-arrange(df,family,item,score)

    # family and item indices
    df$indexFamily <- as.integer(factor(df$family))
    df$indexItem <- with(df, as.integer(factor(item, levels=item[!duplicated(item)])))        
    df$indexScore <- as.integer(factor(df$score))

    df<-arrange(df,family,item,score)

    # define the bins

    vMax <- max(df$value)

    guides <- guides[guides < vMax]
    df$value <- df$value/vMax

    # linear projection  
    affine<-switch(direction,
                   'inwards'= function(y) (outerRadius-innerRadius)*y+innerRadius,
                   'outwards'=function(y) (outerRadius-innerRadius)*(1-y)+innerRadius,
                   stop(paste("Unknown direction")))

    df<-within(df, {
      xmin <- (binSize + spaceBar) + 
        (indexItem - 1) * (spaceItem + (binSize + spaceBar)) +
        (indexFamily - 1) * (spaceFamily - spaceItem)
      xmax <- xmin + binSize
      ymax <- affine(1 - value)
    }
    )

    df<-df[with(df, order(family,item,value)), ]
    df<-ddply(df,.(item),mutate,ymin=c(1,ymax[1:(length(ymax)-1)]))

    # build the guides
    guidesDF<-data.frame(
      xmin=rep(df$xmin,length(guides)),
      y=rep(guides/vMax,1,each=nrow(df)))

    guidesDF<-within(guidesDF,{
      xend<-xmin+binSize+spaceBar
      y<-affine(1-y)
    })


    # Building the ggplot object

    totalLength<-tail(df$xmin+binSize+spaceBar+spaceFamily,1)/circleProportion-0

    # histograms
    p<-ggplot(df)+geom_rect(
      aes(
        xmin=xmin,
        xmax=xmax,
        ymin=ymin,
        ymax=ymax,
        fill=score)
    )

    # guides  
    p<-p+geom_segment(
      aes(
        x=xmin,
        xend=xend,
        y=y,
        yend=y),
      colour="white",
      data=guidesDF)

    # label for guides
    guideLabels<-data.frame(
      x=0,
      y=affine(1-guides/vMax),
      label=guides
    )

    p<-p+geom_text(
      aes(x=x,y=y,label=label),
      data=guideLabels,
      angle=-alphaStart*180/pi,
      hjust=1,
      size=4)

    # item labels
    readableAngle<-function(x){
      angle<-x*(-360/totalLength)-alphaStart*180/pi+90
      angle+ifelse(sign(cos(angle*pi/180))+sign(sin(angle*pi/180))==-2,180,0)
    }
    readableJustification<-function(x){
      angle<-x*(-360/totalLength)-alphaStart*180/pi+90
      ifelse(sign(cos(angle*pi/180))+sign(sin(angle*pi/180))==-2,1,0)
    }

    dfItemLabels<-ddply(df,.(item),summarize,xmin=xmin[1])
    dfItemLabels<-within(dfItemLabels,{
      x <- xmin +  (binSize + spaceBar)/2
      angle <- readableAngle(xmin +  (binSize + spaceBar)/2)
      hjust <- readableJustification(xmin +  (binSize + spaceBar)/2)
    })

    p<-p+geom_text(
      aes(
        x=x,
        label=item,
        angle=angle,
        hjust=hjust),
      y=1.02,
      size=itemSize,
      vjust=0.5,
      data=dfItemLabels)

    # family labels
    if(familyLabels){
      #     familyLabelsDF<-ddply(df,.(family),summarise,x=mean(xmin+binSize),angle=mean(xmin+binSize)*(-360/totalLength)-alphaStart*180/pi)
      familyLabelsDF<-aggregate(xmin~family,data=df,FUN=function(s) mean(s+binSize/2))
      familyLabelsDF<-within(familyLabelsDF,{
        x<-xmin
        angle<-xmin*(-360/totalLength)-alphaStart*180/pi
      })

      p<-p+geom_text(
        aes(
          x=x,
          label=family,
          angle=angle),
        data=familyLabelsDF,
        hjust=0.5,
        vjust=0,
        y=1.7)
    }  

    # empty background and remove guide lines, ticks and labels
    p<-p+opts(
      panel.background=theme_blank(),
      axis.title.x=theme_blank(),
      axis.title.y=theme_blank(),
      panel.grid.major=theme_blank(),
      panel.grid.minor=theme_blank(),
      axis.text.x=theme_blank(),
      axis.text.y=theme_blank(),
      axis.ticks=theme_blank()
    )

    # x and y limits
    p<-p+xlim(0,tail(df$xmin+binSize+spaceFamily,1)/circleProportion)
    p<-p+ylim(0,outerRadius+0.7)

    # project to polar coordinates
    p<-p+coord_polar(start=alphaStart)

    # nice colour scale
    if(is.null(legLabels)) legLabels <- levels(df$score)
    names(legLabels) <- levels(df$score)
    p<-p+scale_fill_brewer(name=legTitle, palette='Set1',type='qual', labels=legLabels)

    p
  }
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!