I am attempting to implement my first Factory Design Pattern, and I'm not sure how to avoid using instanceof when adding the factory-made objects to lists. This is what I'm trying to do:
for (ABluePrint bp : bluePrints) {
AVehicle v = AVehicleFactory.buildVehicle(bp);
allVehicles.add(v);
// Can I accomplish this without using 'instanceof'?
if (v instanceof ACar) {
cars.add((ACar) v);
} else if (v instanceof ABoat) {
boats.add((ABoat) v);
} else if (v instanceof APlane) {
planes.add((APlane) v);
}
}
From what I've read on SO, using 'instanceof' is a code smell. Is there a better way to check the type of vehicle that was created by the factory without using 'instanceof'?
I welcome any feedback/suggestions on my implementation as I'm not even sure if I'm going about this the right way.
Full example below:
import java.util.ArrayList;
class VehicleManager {
public static void main(String[] args) {
ArrayList<ABluePrint> bluePrints = new ArrayList<ABluePrint>();
ArrayList<AVehicle> allVehicles = new ArrayList<AVehicle>();
ArrayList<ACar> cars = new ArrayList<ACar>();
ArrayList<ABoat> boats = new ArrayList<ABoat>();
ArrayList<APlane> planes = new ArrayList<APlane>();
/*
* In my application I have to access the blueprints through an API
* b/c they have already been created and stored in a data file.
* I'm creating them here just for example.
*/
ABluePrint bp0 = new ABluePrint(0);
ABluePrint bp1 = new ABluePrint(1);
ABluePrint bp2 = new ABluePrint(2);
bluePrints.add(bp0);
bluePrints.add(bp1);
bluePrints.add(bp2);
for (ABluePrint bp : bluePrints) {
AVehicle v = AVehicleFactory.buildVehicle(bp);
allVehicles.add(v);
// Can I accomplish this without using 'instanceof'?
if (v instanceof ACar) {
cars.add((ACar) v);
} else if (v instanceof ABoat) {
boats.add((ABoat) v);
} else if (v instanceof APlane) {
planes.add((APlane) v);
}
}
System.out.println("All Vehicles:");
for (AVehicle v : allVehicles) {
System.out.println("Vehicle: " + v + ", maxSpeed: " + v.maxSpeed);
}
System.out.println("Cars:");
for (ACar c : cars) {
System.out.println("Car: " + c + ", numCylinders: " + c.numCylinders);
}
System.out.println("Boats:");
for (ABoat b : boats) {
System.out.println("Boat: " + b + ", numRudders: " + b.numRudders);
}
System.out.println("Planes:");
for (APlane p : planes) {
System.out.println("Plane: " + p + ", numPropellers: " + p.numPropellers);
}
}
}
class AVehicle {
double maxSpeed;
AVehicle(double maxSpeed) {
this.maxSpeed = maxSpeed;
}
}
class ACar extends AVehicle {
int numCylinders;
ACar(double maxSpeed, int numCylinders) {
super(maxSpeed);
this.numCylinders = numCylinders;
}
}
class ABoat extends AVehicle {
int numRudders;
ABoat(double maxSpeed, int numRudders) {
super(maxSpeed);
this.numRudders = numRudders;
}
}
class APlane extends AVehicle {
int numPropellers;
APlane(double maxSpeed, int numPropellers) {
super(maxSpeed);
this.numPropellers = numPropellers;
}
}
class AVehicleFactory {
public static AVehicle buildVehicle(ABluePrint blueprint) {
switch (blueprint.type) {
case 0:
return new ACar(100.0, 4);
case 1:
return new ABoat(65.0, 1);
case 2:
return new APlane(600.0, 2);
default:
return new AVehicle(0.0);
}
}
}
class ABluePrint {
int type; // 0 = car; // 1 = boat; // 2 = plane;
ABluePrint(int type) {
this.type = type;
}
}
You could implement the Visitor pattern.
Detailed Answer
The idea is to use polymorphism to perform the type-checking. Each subclass overrides the accept(Visitor)
method, which should be declared in the superclass. When we have a situation like:
void add(Vehicle vehicle) {
//what type is vehicle??
}
We can pass an object into a method declared in Vehicle
. If vehicle
is of type Car
, and class Car
overrode the method we passed the object into, that object would now be processed within the method declared in the Car
class. We use this to our advantage: creating a Visitor
object and pass it to an overriden method:
abstract class Vehicle {
public abstract void accept(AddToListVisitor visitor);
}
class Car extends Vehicle {
public void accept(AddToListVisitor visitor) {
//gets handled in this class
}
}
This Visitor
should be prepared to visit type Car
. Any type that you want to avoid using instanceof
to find the actual type of must be specified in the Visitor
.
class AddToListVisitor {
public void visit(Car car) {
//now we know the type! do something...
}
public void visit(Plane plane) {
//now we know the type! do something...
}
}
Here's where the type checking happens!
When the Car
receives the visitor, it should pass itself in using the this
keyword. Since we are in class Car
, the method visit(Car)
will be invoked. Inside of our visitor, we can perform the action we want, now that we know the type of the object.
So, from the top:
You create a Visitor
, which performs the actions you want. A visitor should consist of a visit
method for each type of object you want to perform an action on. In this case, we are creating a visitor for vehicles:
interface VehicleVisitor {
void visit(Car car);
void visit(Plane plane);
void visit(Boat boat);
}
The action we want to perform is adding the vehicle to something. We would create an AddTransportVisitor
; a visitor that manages adding transportations:
class AddTransportVisitor implements VehicleVisitor {
public void visit(Car car) {
//add to car list
}
public void visit(Plane plane) {
//add to plane list
}
public void visit(Boat boat) {
//add to boat list
}
}
Every vehicle should be able to accept vehicle visitors:
abstract class Vehicle {
public abstract void accept(VehicleVisitor visitor);
}
When a visitor is passed to a vehicle, the vehicle should invoke it's visit
method, passing itself into the arguments:
class Car extends Vehicle {
public void accept(VehicleVisitor visitor) {
visitor.visit(this);
}
}
class Boat extends Vehicle {
public void accept(VehicleVisitor visitor) {
visitor.visit(this);
}
}
class Plane extends Vehicle {
public void accept(VehicleVisitor visitor) {
visitor.visit(this);
}
}
That's where the type-checking happens. The correct visit
method is called, which contains the correct code to execute based on the method's parameters.
The last problem is having the VehicleVisitor
interact with the lists. This is where your VehicleManager
comes in: it encapsulates the lists, allowing you to add vehicles through a VehicleManager#add(Vehicle)
method.
When we create the visitor, we can pass the manager to it (possibly through it's constructor), so we can perform the action we want, now that we know the object's type. The VehicleManager
should contain the visitor and intercept VehicleManager#add(Vehicle)
calls:
class VehicleManager {
private List<Car> carList = new ArrayList<>();
private List<Boat> boatList = new ArrayList<>();
private List<Plane> planeList = new ArrayList<>();
private AddTransportVisitor addVisitor = new AddTransportVisitor(this);
public void add(Vehicle vehicle) {
vehicle.accept(addVisitor);
}
public List<Car> getCarList() {
return carList;
}
public List<Boat> getBoatList() {
return boatList;
}
public List<Plane> getPlaneList() {
return planeList;
}
}
We can now write implementations for the AddTransportVisitor#visit
methods:
class AddTransportVisitor implements VehicleVisitor {
private VehicleManager manager;
public AddTransportVisitor(VehicleManager manager) {
this.manager = manager;
}
public void visit(Car car) {
manager.getCarList().add(car);
}
public void visit(Plane plane) {
manager.getPlaneList().add(plane);
}
public void visit(Boat boat) {
manager.getBoatList().add(boat);
}
}
I highly suggest removing the getter methods and declaring overloaded add
methods for each type of vehicle. This will reduce overhead from "visiting" when it's not needed, for example, manager.add(new Car())
:
class VehicleManager {
private List<Car> carList = new ArrayList<>();
private List<Boat> boatList = new ArrayList<>();
private List<Plane> planeList = new ArrayList<>();
private AddTransportVisitor addVisitor = new AddTransportVisitor(this);
public void add(Vehicle vehicle) {
vehicle.accept(addVisitor);
}
public void add(Car car) {
carList.add(car);
}
public void add(Boat boat) {
boatList.add(boat);
}
public void add(Plane plane) {
planeList.add(plane);
}
public void printAllVehicles() {
//loop through vehicles, print
}
}
class AddTransportVisitor implements VehicleVisitor {
private VehicleManager manager;
public AddTransportVisitor(VehicleManager manager) {
this.manager = manager;
}
public void visit(Car car) {
manager.add(car);
}
public void visit(Plane plane) {
manager.add(plane);
}
public void visit(Boat boat) {
manager.add(boat);
}
}
public class Main {
public static void main(String[] args) {
Vehicle[] vehicles = {
new Plane(),
new Car(),
new Car(),
new Car(),
new Boat(),
new Boat()
};
VehicleManager manager = new VehicleManager();
for(Vehicle vehicle : vehicles) {
manager.add(vehicle);
}
manager.printAllVehicles();
}
}
You can add method to vehicle class to print the text. Then override the method in each specialized Car class. Then just add all the cars to the vehicle list. And loop the list to print the text.
I'm not too happy with the lists of cars, boats and planes in the first place. You have multiple examples of reality but the list isn't inherently all-inclusive--what happens when your factory starts making submarines or rockets?
Instead, how about an enum with the types car, boat and plane. You have an array of lists of vehicles.
The generic vehicle has an abstract property CatalogAs, the various vehicles actually implement this and return the proper value.
Done some restructuring of your code. Hope that works for you. Check this:
import java.util.ArrayList;
class VehicleManager {
public static void main(String[] args) {
ArrayList<ABluePrint> bluePrints = new ArrayList<ABluePrint>();
ArrayList<AVehicle> allVehicles = new ArrayList<AVehicle>();
ArrayList<ACar> cars = null;
ArrayList<ABoat> boats = null;
ArrayList<APlane> planes = null;
/*
* In my application I have to access the blueprints through an API
* b/c they have already been created and stored in a data file.
* I'm creating them here just for example.
*/
ABluePrint bp0 = new ABluePrint(0);
ABluePrint bp1 = new ABluePrint(1);
ABluePrint bp2 = new ABluePrint(2);
bluePrints.add(bp0);
bluePrints.add(bp1);
bluePrints.add(bp2);
for (ABluePrint bp : bluePrints) {
AVehicle v = AVehicleFactory.buildVehicle(bp);
allVehicles.add(v);
// Can I accomplish this without using 'instanceof'?
// dont add objects to list here, do it from constructor or in factory
/*if (v instanceof ACar) {
cars.add((ACar) v);
} else if (v instanceof ABoat) {
boats.add((ABoat) v);
} else if (v instanceof APlane) {
planes.add((APlane) v);
}*/
}
cars = ACar.getCars();
boats = ABoat.getBoats();
planes = APlane.getPlanes();
System.out.println("All Vehicles:");
for (AVehicle v : allVehicles) {
System.out.println("Vehicle: " + v + ", maxSpeed: " + v.maxSpeed);
}
System.out.println("Cars:");
for (ACar c : cars) {
System.out.println("Car: " + c + ", numCylinders: " + c.numCylinders);
}
System.out.println("Boats:");
for (ABoat b : boats) {
System.out.println("Boat: " + b + ", numRudders: " + b.numRudders);
}
System.out.println("Planes:");
for (APlane p : planes) {
System.out.println("Plane: " + p + ", numPropellers: " + p.numPropellers);
}
}
}
class AVehicle {
double maxSpeed;
AVehicle(double maxSpeed) {
this.maxSpeed = maxSpeed;
}
void add(){}
}
class ACar extends AVehicle {
static ArrayList<ACar> cars = new ArrayList<ACar>();
int numCylinders;
ACar(double maxSpeed, int numCylinders) {
super(maxSpeed);
this.numCylinders = numCylinders;
}
void add(){
cars.add(this);
}
public static ArrayList<ACar> getCars(){
return cars;
}
}
class ABoat extends AVehicle {
static ArrayList<ABoat> boats = new ArrayList<ABoat>();
int numRudders;
ABoat(double maxSpeed, int numRudders) {
super(maxSpeed);
this.numRudders = numRudders;
}
void add(){
boats.add(this);
}
public static ArrayList<ABoat> getBoats(){
return boats;
}
}
class APlane extends AVehicle {
static ArrayList<APlane> planes = new ArrayList<APlane>();
int numPropellers;
APlane(double maxSpeed, int numPropellers) {
super(maxSpeed);
this.numPropellers = numPropellers;
}
void add(){
planes.add(this);
}
public static ArrayList<APlane> getPlanes(){
return planes;
}
}
class AVehicleFactory {
public static AVehicle buildVehicle(ABluePrint blueprint) {
AVehicle vehicle;
switch (blueprint.type) {
case 0:
vehicle = new ACar(100.0, 4);
break;
case 1:
vehicle = new ABoat(65.0, 1);
break;
case 2:
vehicle = new APlane(600.0, 2);
break;
default:
vehicle = new AVehicle(0.0);
}
vehicle.add();
return vehicle;
}
}
class ABluePrint {
int type; // 0 = car; // 1 = boat; // 2 = plane;
ABluePrint(int type) {
this.type = type;
}
}
With the above code, the class will have to know about the collection to which it has to be added. This can be considered as a downside to a good design and it can be overcome using the visitor design pattern as demonstrated in the accepted answer (How to avoid 'instanceof' when implementing factory design pattern?).
I know its been a long time since this question was asked. I found http://www.nurkiewicz.com/2013/09/instanceof-operator-and-visitor-pattern.html which looks to be useful. Sharing it here in case if somebody is interested.
Had a similar issue so I used this pattern, to understand it better I created a simple UML drawing showing the sequence of things in comments (follow the numbers). I used Vince Emighs solution above.. The pattern solution is more elegant but can requires some time to truly understand. It requires one interface and one class more then the original but they are very simple.
What if AVehicle classes are out of your control? E.g. you have it from some 3rd party lib? So you have no way to add the Visitor pattern accept() method. Also you could probably dislike boilerplate code in each of the AVehicle subclass and prefer to put everything in one special class keeping your classes clean. For some cases it could be better just to use HashMap.
In your sample just use:
Map<Class<? extends AVehicle>, List<? extends AVehicle>> lists = new HashMap<>();
lists.put(ACar.class, new ArrayList<ACar>());
lists.put(ABoat.class, new ArrayList<ABoat>());
lists.put(APlane.class, new ArrayList<APlane>());
for (ABluePrint bp : bluePrints) {
AVehicle v = AVehicleFactory.buildVehicle(bp);
allVehicles.add(v);
lists.get(v.getClass()).add(v);
}
The problem with this HashMap approach is that you have to register all possible classes including all known subclasses. Although if you have huge hierarchy and it is not needed all classes for your task you can save lots of work registering in the Map just needed ones.
来源:https://stackoverflow.com/questions/29458676/how-to-avoid-instanceof-when-implementing-factory-design-pattern