http://pandas.pydata.org/pandas-docs/stable/io.html#indexing
I'm really confused about this concept of Data columns in Pandas HDF5 IO. Plus there's very little to no information about it to be found on googling it either. Since I'm diving into Pandas in a large project which involves HDF5 storage, I'd like to be clear about such concepts.
The docs say:
You can designate (and index) certain columns that you want to be able to perform queries (other than the indexable columns, which you can always query). For instance say you want to perform this common operation, on-disk, and return just the frame that matches this query. You can specify data_columns = True to force all columns to be data_columns
This is confusing:
other than the indexable columns, which you can always query
: What are 'indexable' columns? aren't all columns 'indexable'? What does this term mean?For instance say you want to perform this common operation, on-disk, and return just the frame that matches this query.
How is that different from normal querying on a Pytable; with or without any indexes ofdata_columns
?What is the fundamental difference between a non-indexed, indexed, and data_column column?
You should just try it.
In [22]: df = DataFrame(np.random.randn(5,2),columns=['A','B'])
In [23]: store = pd.HDFStore('test.h5',mode='w')
In [24]: store.append('df_only_indexables',df)
In [25]: store.append('df_with_data_columns',df,data_columns=True)
In [26]: store.append('df_no_index',df,data_columns=True,index=False)
In [27]: store
Out[27]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df_no_index frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index],dc->[A,B])
/df_only_indexables frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index])
/df_with_data_columns frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index],dc->[A,B])
In [28]: store.close()
you automatically get the index of the stored frame as a queryable column. By default NO other columns can be queried.
If you specify
data_columns=True
ordata_columns=list_of_columns
, then these are stored separately and can then be subsequently queried.If you specify
index=False
then aPyTables
index is not automatically created for the queryable column (eg. theindex
and/ordata_columns
).
To see the actual indexes being created (the PyTables
indexes), see the output below. colindexes
defines which columns have an actual PyTables
index created. (I have truncated it somewhat).
/df_no_index/table (Table(5,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"A": Float64Col(shape=(), dflt=0.0, pos=1),
"B": Float64Col(shape=(), dflt=0.0, pos=2)}
byteorder := 'little'
chunkshape := (2730,)
/df_no_index/table._v_attrs (AttributeSet), 15 attributes:
[A_dtype := 'float64',
A_kind := ['A'],
B_dtype := 'float64',
B_kind := ['B'],
CLASS := 'TABLE',
FIELD_0_FILL := 0,
FIELD_0_NAME := 'index',
FIELD_1_FILL := 0.0,
FIELD_1_NAME := 'A',
FIELD_2_FILL := 0.0,
FIELD_2_NAME := 'B',
NROWS := 5,
TITLE := '',
VERSION := '2.7',
index_kind := 'integer']
/df_only_indexables/table (Table(5,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(2,), dflt=0.0, pos=1)}
byteorder := 'little'
chunkshape := (2730,)
autoindex := True
colindexes := {
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False}
/df_only_indexables/table._v_attrs (AttributeSet), 11 attributes:
[CLASS := 'TABLE',
FIELD_0_FILL := 0,
FIELD_0_NAME := 'index',
FIELD_1_FILL := 0.0,
FIELD_1_NAME := 'values_block_0',
NROWS := 5,
TITLE := '',
VERSION := '2.7',
index_kind := 'integer',
values_block_0_dtype := 'float64',
values_block_0_kind := ['A', 'B']]
/df_with_data_columns/table (Table(5,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"A": Float64Col(shape=(), dflt=0.0, pos=1),
"B": Float64Col(shape=(), dflt=0.0, pos=2)}
byteorder := 'little'
chunkshape := (2730,)
autoindex := True
colindexes := {
"A": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"B": Index(6, medium, shuffle, zlib(1)).is_csi=False}
/df_with_data_columns/table._v_attrs (AttributeSet), 15 attributes:
[A_dtype := 'float64',
A_kind := ['A'],
B_dtype := 'float64',
B_kind := ['B'],
CLASS := 'TABLE',
FIELD_0_FILL := 0,
FIELD_0_NAME := 'index',
FIELD_1_FILL := 0.0,
FIELD_1_NAME := 'A',
FIELD_2_FILL := 0.0,
FIELD_2_NAME := 'B',
NROWS := 5,
TITLE := '',
VERSION := '2.7',
index_kind := 'integer']
So if you want to query a column, make it a data_column
. If you don't then they will be stored in blocks by dtype (faster / less space).
You normally always want to index a column for retrieval, BUT, if you are creating and then appending multiple files to a single store, you usually turn off the index creation and do it at the end (as this is pretty expensive to create as you go).
See the cookbook for a menagerie of questions.
来源:https://stackoverflow.com/questions/25714549/indexing-and-data-columns-in-pandas-pytables