【分类算法】朴素贝叶斯(Naive Bayes)

*爱你&永不变心* 提交于 2019-12-02 19:15:30

0 - 算法

  给定如下数据集

$$T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\},$$

假设$X$有$J$维特征,且各维特征是独立分布的,$Y$有$K$种取值。则对于输入$x$,朴素贝叶斯算法的输出为

$$y=arg\max_{c_k}P(Y=c_k)\prod_j P(X^{(j)}=x^{(j)}|Y=c_k),j=1,\cdots,J,k=1,\cdots,K,$$

1 - 推导

  朴素贝叶斯的基本公式为

$$P(B|A)=\frac{P(A|B)P(B)}{P(A)},$$

  在数据集$T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\},$中,有如下几个公式成立

$$\begin{align} a+b \end{align}$$

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!