I am trying to solve the maxium flow problem for a graph using Ford–Fulkerson algorithm. The algorithm is only described with a directed graph. What about when the graph is undirected?
What I have done to mimic an undirected graph is to use two directed edges between a pair of vertices. What confuses me is: Should each of these edges then have a residual edge or is the "opposite" directed edge the residual edge?
I have assumed the last but my algorithm seems to go in an infinite loop. I hope any of you can give me some help. Below is my own implementation. I am using DFS in find.
import sys
import fileinput
class Vertex(object):
def __init__(self, name):
self.name = name
self.edges = []
def find(self, sink, path):
if(self == sink):
return path
for edge in self.edges:
residual = edge.capacity - edge.flow
if(residual > 0 or edge.inf):
if(edge not in path and edge.oppositeEdge not in path):
toVertex = edge.toVertex
path.append(edge)
result = toVertex.find(sink, path)
if result != None:
return result
class Edge(object):
def __init__(self, fromVertex, toVertex, capacity):
self.fromVertex = fromVertex
self.toVertex = toVertex
self.capacity = capacity
self.flow = 0
self.inf = False
if(capacity == -1):
self.inf = True
def __repr__(self):
return self.fromVertex.name.strip() + " - " + self.toVertex.name.strip()
def buildGraph(vertices, edges):
for edge in edges:
sourceVertex = vertices[int(edge[0])]
sinkVertex = vertices[int(edge[1])]
capacity = int(edge[2])
edge1 = Edge(sourceVertex, sinkVertex, capacity)
edge2 = Edge(sinkVertex, sourceVertex, capacity)
sourceVertex.edges.append(edge1)
sinkVertex.edges.append(edge2)
edge1.oppositeEdge = edge2
edge2.oppositeEdge = edge1
def maxFlow(source, sink):
path = source.find(sink, [])
while path != None:
minCap = sys.maxint
for e in path:
if(e.capacity < minCap and not e.inf):
minCap = e.capacity
for edge in path:
edge.flow += minCap
edge.oppositeEdge.flow -= minCap
path = source.find(sink, [])
return sum(e.flow for e in source.edges)
vertices, edges = parse()
buildGraph(vertices, edges)
source = vertices[0]
sink = vertices[len(vertices)-1]
maxFlow = maxFlow(source, sink)
Your approach using two antiparallel edges works. If your edge is a->b
(capacity 10, we send 7 over it), we introduce a new residual edge (from b
to a
that has residual capacity 17, the residual edge from a
to b
has the remaining capacity 3).
The original back-edge (from b
to a
) can be left as it is or the new residual edge and the original backedge can be melt into one edge.
I could imagine that adding the residual capacity to the original back-edge is a bit simpler, but not sure about that.
来源:https://stackoverflow.com/questions/7687732/maximum-flow-ford-fulkerson-undirected-graph