[练习4]分析bootloader加载ELF格式的OS的过程
通过阅读bootmain.c,了解bootloader如何加载ELF文件。通过分析源代码和通过qemu来运行并调试bootloader&OS,理解:
- 1.bootloader如何读取硬盘扇区的?
- 2.bootloader是如何加载ELF格式的OS?
问题1:bootloader如何读取硬盘扇区
分析原理
阅读材料其实已经给出了读一个扇区的大致流程:
- 1.等待磁盘准备好
- 2.发出读取扇区的命令
- 3.等待磁盘准备好
- 4.把磁盘扇区数据读到指定内存
实际操作中,需要知道怎样与硬盘交互。阅读材料中同样给出了答案:所有的IO操作是通过CPU访问硬盘的IO地址寄存器完成。硬盘共有8个IO地址寄存器,其中第1个存储数据,第8个存储状态和命令,第3个存储要读写的扇区数,第4~7个存储要读写的起始扇区的编号(共28位)。了解这些信息,就不难编程实现啦。
分析代码
bootloader读取扇区的功能是在boot/bootmain.c的readsect函数中实现的,先贴代码:
static void
waitdisk(void) { //如果0x1F7的最高2位是01,跳出循环
while ((inb(0x1F7) & 0xC0) != 0x40)
/* do nothing */;
}
/* readsect - read a single sector at @secno into @dst */
static void
readsect(void *dst, uint32_t secno) {
// wait for disk to be ready
waitdisk();
outb(0x1F2, 1); //读取一个扇区
outb(0x1F3, secno & 0xFF); //要读取的扇区编号
outb(0x1F4, (secno >> 8)&0xFF);//用来存放读写柱面的低8位字节
outb(0x1F5, (secno >> 16)&0xFF);//用来存放读写柱面的高2位字节
// 用来存放要读/写的磁盘号及磁头号
outb(0x1F6, ((secno >> 24) & 0xF) | 0xE0);
outb(0x1F7, 0x20); // cmd 0x20 - read sectors
// wait for disk to be ready
waitdisk();
// read a sector
insl(0x1F0, dst, SECTSIZE / 4); //获取数据
}
一般主板有2个IDE通道,每个通道可以接2个IDE硬盘。访问第一个硬盘的扇区可设置IO地址寄存器0x1f0-0x1f7实现的,具体参数见下表。一般第一个IDE通道通过访问IO地址0x1f0-0x1f7来实现,第二个IDE通道通过访问0x170-0x17f实现。每个通道的主从盘的选择通过第6个IO偏移地址寄存器来设置。从outb()可以看出这里是用LBA模式的PIO(Program IO)方式来访问硬盘的。从磁盘IO地址和对应功能表可以看出,该函数一次只读取一个扇区。
readseg简单包装了readsect,可以从设备读取任意长度的内容。
static void
readseg(uintptr_t va, uint32_t count, uint32_t offset) {
uintptr_t end_va = va + count;
va -= offset % SECTSIZE;
uint32_t secno = (offset / SECTSIZE) + 1;
// 加1因为0扇区被引导占用
// ELF文件从1扇区开始
for (; va < end_va; va += SECTSIZE, secno ++) {
readsect((void *)va, secno);
}
}
根据代码可以得出读取硬盘扇区的步骤:
-
等待硬盘空闲。waitdisk的函数实现只有一行:while ((inb(0x1F7) & 0xC0) != 0x40),意思是不断查询读0x1F7寄存器的最高两位,直到最高位为0、次高位为1(这个状态应该意味着磁盘空闲)才返回。
-
硬盘空闲后,发出读取扇区的命令。对应的命令字为0x20,放在0x1F7寄存器中;读取的扇区数为1,放在0x1F2寄存器中;读取的扇区起始编号共28位,分成4部分依次放在0x1F3~0x1F6寄存器中。
-
发出命令后,再次等待硬盘空闲。
-
硬盘再次空闲后,开始从0x1F0寄存器中读数据。注意insl的作用是"That function will read cnt dwords from the input port specified by port into the supplied output array addr.",是以dword即4字节为单位的,因此这里SECTIZE需要除以4.
问题2: bootloader如何加载ELF格式的OS
分析原理
首先从原理上分析加载流程。
-
bootloader要加载的是bin/kernel文件,这是一个ELF文件。其开头是ELF header,ELF Header里面含有phoff字段,用于记录program header表在文件中的偏移,由该字段可以找到程序头表的起始地址。程序头表是一个结构体数组,其元素数目记录在ELF Header的phnum字段中。
-
程序头表的每个成员分别记录一个Segment的信息,包括以下加载需要用到的信息:
- uint offset; // 段相对文件头的偏移值,由此可知怎么从文件中找到该Segment
- uint va; // 段的第一个字节将被放到内存中的虚拟地址,由此可知要将该 Segment加载到内存中哪个位置
- uint memsz; // 段在内存映像中占用的字节数,由此可知要加载多少内容
-
根据ELF Header和Program Header表的信息,我们便可以将ELF文件中的所有Segment逐个加载到内存中
分析代码
ELF定义:
/* file header */
struct elfhdr {
uint32_t e_magic; // must equal ELF_MAGIC
uint8_t e_elf[12];
uint16_t e_type; // 1=relocatable, 2=executable, 3=shared object, 4=core image
uint16_t e_machine; // 3=x86, 4=68K, etc.
uint32_t e_version; // file version, always 1
uint32_t e_entry; // entry point if executable
uint32_t e_phoff; // file position of program header or 0
uint32_t e_shoff; // file position of section header or 0
uint32_t e_flags; // architecture-specific flags, usually 0
uint16_t e_ehsize; // size of this elf header
uint16_t e_phentsize; // size of an entry in program header
uint16_t e_phnum; // number of entries in program header or 0
uint16_t e_shentsize; // size of an entry in section header
uint16_t e_shnum; // number of entries in section header or 0
uint16_t e_shstrndx; // section number that contains section name strings
};
在这里我们只需要关注其中的几个参数,e_magic,是用来判断读出来的ELF格式的文件是否为正确的格式;e_phoff,是program header表的位置偏移;e_phnum,是program header表中的入口数目;e_entry,是程序入口所对应的虚拟地址。
宏定义:
#define ELFHDR ((struct elfhdr *)0x10000)
#define SECTSIZE 512
bootloader加载os的功能是在bootmain函数中实现的,先贴代码:
void
bootmain(void) {
// 首先读取ELF的头部
readseg((uintptr_t)ELFHDR, SECTSIZE * 8, 0);
// 通过储存在头部的幻数判断是否是合法的ELF文件
if (ELFHDR->e_magic != ELF_MAGIC) {
goto bad;
}
struct proghdr *ph, *eph;
// ELF头部有描述ELF文件应加载到内存什么位置的描述表,
// 先将描述表的头地址存在ph
ph = (struct proghdr *)((uintptr_t)ELFHDR + ELFHDR->e_phoff);
eph = ph + ELFHDR->e_phnum;
// 按照描述表将ELF文件中数据载入内存
for (; ph < eph; ph ++) {
readseg(ph->p_va & 0xFFFFFF, ph->p_memsz, ph->p_offset);
}
// ELF文件0x1000位置后面的0xd1ec比特被载入内存0x00100000
// ELF文件0xf000位置后面的0x1d20比特被载入内存0x0010e000
// 根据ELF头部储存的入口信息,找到内核的入口
((void (*)(void))(ELFHDR->e_entry & 0xFFFFFF))();
bad:
outw(0x8A00, 0x8A00);
outw(0x8A00, 0x8E00);
while (1);
}
-
首先从硬盘中将bin/kernel文件的第一页内容加载到内存地址为0x10000的位置,目的是读取kernel文件的ELF Header信息。
-
校验ELF Header的e_magic字段,以确保这是一个ELF文件
-
读取ELF Header的e_phoff字段,得到Program Header表的起始地址;读取ELF Header的e_phnum字段,得到Program Header表的元素数目。
-
遍历Program Header表中的每个元素,得到每个Segment在文件中的偏移、要加载到内存中的位置(虚拟地址)及Segment的长度等信息,并通过磁盘I/O进行加载
-
加载完毕,通过ELF Header的e_entry得到内核的入口地址,并跳转到该地址开始执行内核代码
调试代码
-
输入
make debug
启动gdb,并在bootmain函数入口处即0x7d0d设置断点,输入c跳到该入口 -
单步执行几次,运行到call readseg处,由于该函数会反复读取硬盘,为节省时间,可在下一条语句设置断点,避免进入到readseg函数内部反复执行循环语句。(或者直接输入n即可,不用这么麻烦)
-
执行完readseg后,可以通过
x/xw 0x10000
查询ELF Header的e_magic的值,查询结果如下,确实与0x464c457f相等,所以校验成功。注意,我们的硬件是小端字节序(这从asm文件的汇编语句和二进制代码的对比中不难发现),因此0x464c45实际上对应字符串"elf",最低位的0x7f字符对应DEL。
(gdb) x/xw 0x10000
0x10000: 0x464c457f
- 继续单步执行,由
0x7d2f mov 0x1001c,%eax
可知ELF Header的e_phoff字段将加载到eax寄存器,0x1001c相对0x10000的偏移为0x1c,即相差28个字节,这与ELF Header的定义相吻合。执行完0x7d2f处的指令后,可以看到eax的值变为0x34,说明program Header表在文件中的偏移为0x34,则它在内存中的位置为0x10000 + 0x34 = 0x10034.查询0x10034往后8个字节的内容如下所示:
(gdb) x/8xw 0x10034
0x10034: 0x00000001 0x00001000 0x00100000 0x00100000
0x10044: 0x0000dac4 0x0000dac4 0x00000005 0x00001000
- 可以结合代码中定义的Program Header结构来理解这8个字节的含义。
struct proghdr {
uint32_t p_type; // loadable code or data, dynamic linking info,etc.
uint32_t p_offset; // file offset of segment
uint32_t p_va; // virtual address to map segment
uint32_t p_pa; // physical address, not used
uint32_t p_filesz; // size of segment in file
uint32_t p_memsz; // size of segment in memory (bigger if contains bss)
uint32_t p_flags; // read/write/execute bits
uint32_t p_align; // required alignment, invariably hardware page size
};
- 还可以使用readelf -l bin/kernel来查询kernel文件各个Segment的基本信息,以作对比。查询结果如下所示,可见与gdb调试结果是一致的。
Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x001000 0x00100000 0x00100000 0x0dac4 0x0dac4 R E 0x1000
LOAD 0x00f000 0x0010e000 0x0010e000 0x00aac 0x01dc0 RW 0x1000
GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x10
-
继续单步执行,由0x7d34 movzwl 0x1002c,%esi可知ELF Header的e_phnum字段将加载到esi寄存器,执行完x07d34处的指令后,可以看到esi的值变为3,这说明一共有3个segment。
-
后面是通过磁盘I/O完成三个Segment的加载,不再赘述。
总结一下就是:
- 从硬盘读了8个扇区数据到内存0x10000处,并把这里强制转换成elfhdr使用;
- 校验e_magic字段;
- 根据偏移量分别把程序段的数据读取到内存中。
来源:https://blog.csdn.net/qq_44768749/article/details/102775846