How to properly manage database deployment with SSDT and Visual Studio 2012 Database Projects?

折月煮酒 提交于 2019-12-02 13:52:35

I've been working on this myself, and I can tell you it's not easy.

First, to address the reply by JT - you cannot dismiss "versions", even with declarative updating mechanics that SSDT has. SSDT does a "pretty decent" job (provided you know all the switches and gotchas) of moving any source schema to any target schema, and it's true that this doesn't require verioning per se, but it has no idea how to manage "data motion" (at least not that i can see!). So, just like DBProj, you left to your own devices in Pre/Post scripts. Because the data motion scripts depend on a known start and end schema state, you cannot avoid versioning the DB. The "data motion" scripts, therefore, must be applied to a versioned snapshot of the schema, which means you cannot arbitrarily update a DB from v1 to v8 and expect the data motion scripts v2 to v8 to work (presumably, you wouldn't need a v1 data motion script).

Sadly, I can't see any mechanism in SSDT publishing that allows me to handle this scenario in an integrated way. That means you'll have to add your own scafolding.

The first trick is to track versions within the database (and SSDT project). I started using a trick in DBProj, and brought it over to SSDT, and after doing some research, it turns out that others are using this too. You can apply a DB Extended Property to the database itself (call it "BuildVersion" or "AppVersion" or something like that), and apply the version value to it. You can then capture this extended property in the SSDT project itself, and SSDT will add it as a script (you can then check the publish option that includes extended properties). I then use SQLCMD variables to identify the source and target versions being applied in the current pass. Once you identify the delta of versions between the source (project snapshot) and target (target db about to be updated), you can find all the snapshots that need to be applied. Sadly, this is tricky to do from inside the SSDT deployment, and you'll probably have to move it to the build or deployment pipeline (we use TFS automated deployments and have custom actions to do this).

The next hurdle is to keep snapshots of the schema with their associated data motion scripts. In this case, it helps to make the scripts as idempotent as possible (meaning, you can rerun the scripts without any ill side-effects). It helps to split scripts that can safely be rerun from scripts that must be executed one time only. We're doing the same thing with static reference data (dictionary or lookup tables) - in other words, we have a library of MERGE scripts (one per table) that keep the reference data in sync, and these scripts are included in the post-deployment scripts (via the SQLCMD :r command). The important thing to note here is that you must execute them in the correct order in case any of these reference tables have FK references to each other. We include them in the main post-deploy script in order, and it helps that we created a tool that generates these scripts for us - it also resolves dependency order. We run this generation tool at the close of a "version" to capture the current state of the static reference data. All your other data motion scripts are basically going to be special-case and most likely will be single-use only. In that case, you can do one of two things: you can use an IF statement against the db build/app version, or you can wipe out the 1 time scripts after creating each snapshot package.

It helps to remember that SSDT will disable FK check constraints and only re-enable them after the post-deployment scripts run. This gives you a chance to populate new non-null fields, for example (by the way, you have to enable the option to generate temporary "smart" defaults for non-null columns to make this work). However, FK check constraints are only disabled for tables that SSDT is recreating because of a schema change. For other cases, you are responsible for ensuring that data motion scripts run in the proper order to avoid check constraints complaints (or you manually have disable/re-enable them in your scripts).

DACPAC can help you because DACPAC is essentially a snapshot. It will contain several XML files describing the schema (similar to the build output of the project), but frozen in time at the moment you create it. You can then use SQLPACKAGE.EXE or the deploy provider to publish that package snapshot. I haven't quite figured out how to use the DACPAC versioning, because it's more tied to "registered" data apps, so we're stuck with our own versioning scheme, but we do put our own version info into the DACPAC filename.

I wish I had a more conclusive and exhasutive example to provide, but we're still working out the issues here too.

One thing that really sucks about SSDT is that unlike DBProj, it's currently not extensible. Although it does a much better job than DBProj at a lot of different things, you can't override its default behavior unless you can find some method inside of pre/post scripts of getting around a problem. One of the issues we're trying to resolve right now is that the default method of recreating a table for updates (CCDR) really stinks when you have tens of millions of records.

-UPDATE: I haven't seen this post in some time, but apparently it's been active lately, so I thought I'd add a couple of important notes: if you are using VS2012, the June 2013 release of SSDT now has a Data Comparison tool built-in, and also provides extensibility points - that is to say, you can now include Build Contributors and Deployment Plan Modifiers for the project.

I haven't really found any more useful information on the subject but I've spent some time getting to know the tools, tinkering and playing, and I think I've come up with some acceptable answers to my question. These aren't necessarily the best answers. I still don't know if there are other mechanisms or best practices to better support these scenarios, but here's what I've come up with:

The Pre- and Post-Deploy scripts for a given version of the database are only used migrate data from the previous version. At the start of every development cycle, the scripts are cleaned out and as development proceeds they get fleshed out with whatever sql is needed to safely migrate data from the previous version to the new one. The one exception here is static data in the database. This data is known at design time and maintains a permanent presence in the Post-Deploy scripts in the form of T-SQL MERGE statements. This helps make it possible to deploy any version of the database to a new environment with just the latest publish script. At the end of every development cycle, a publish script is generated from the previous version to the new one. This script will include generated sql to migrate the schema and the hand crafted deploy scripts. Yes, I know the Publish tool can be used directly against a database but that's not a good option for our clients. I am also aware of dacpac files but I'm not really sure how to use them. The generated publish script seems to be the best option I know for production upgrades.

So to answer my scenarios:

1) To upgrade a database from v3 to v8, I would have to execute the generated publish script for v4, then for v5, then for v6, etc. This is very similar to how we do it now. It's well understood and Database Projects seem to make creating/maintaining these scripts much easier.

2) When the schema changes from underneath data, the Pre- and Post-Deploy scripts are used to migrate the data to where it needs to go for the new version. Affected data is essentially backed-up in the Pre-Deploy script and put back into place in the Post-Deploy script.

3) I'm still looking for advice on how best to work with these tools in these scenarios and others. If I got anything wrong here, or if there are any other gotchas I should be aware of, please let me know! Thanks!

In my experience of using SSDT the notion of version numbers (i.e. v1, v2...vX etc...) for databases kinda goes away. This is because SSDT offers a development paradigm known as declarative database development which loosely means that you tell SSDT what state you want your schema to be in and then let SSDT take responsibility for getting it into that state by comparing against what you already have. In this paradigm the notion of deploying v4 then v5 etc.... goes away.

Your pre and post deployment scripts, as you correctly state, exist for the purposes of managing data.

Hope that helps.

JT

I just wanted to say that this thread so far has been excellent.

I have been wrestling with the exact same concerns and am attempting to tackle this problem in our organization, on a fairly large legacy application. We've begun the process of moving toward SSDT (on a TFS branch) but are at the point where we really need to understand the deployment process, and managing custom migrations, and reference/lookup data, along the way.

To complicate things further, our application is one code-base but can be customized per 'customer', so we have about 190 databases we are dealing with, for this one project, not just 3 or so as is probably normal. We do deployments all the time and even setup new customers fairly often. We rely heavily on PowerShell now with old-school incremental release scripts (and associated scripts to create a new customer at that version). I plan to contribute once we figure this all out but please share whatever else you've learned. I do believe we will end up maintaining custom release scripts per version, but we'll see. The idea about maintaining each script within the project, and including a From and To SqlCmd variable is very interesting. If we did that, we would probably prune along the way, physically deleting the really old upgrade scripts once everybody was past that version.

BTW - Side note - On the topic of minimizing waste, we also just spent a bunch of time figuring out how to automate the enforcement of proper naming/data type conventions for columns, as well as automatic generation for all primary and foreign keys, based on naming conventions, as well as index and check constraints etc. The hardest part was dealing with the 'deviants' that didn't follow the rules. Maybe I'll share that too one day if anyone is interested, but for now, I need to pursue this deployment, migration, and reference data story heavily. Thanks again. It's like you guys were speaking exactly what was in my head and looking for this morning.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!