I have the following dict structure.
product1 = {'product_tmpl_id': product_id,
'qty':product_uom_qty,
'price':price_unit,
'subtotal':price_subtotal,
'total':price_total,
}
And then a list of products, each item in the list is a dict with the above structure
list_ = [product1,product2,product3,.....]
I need to sum the item in the list, group by the key product_tmpl_id
... I'm using dictcollections but it only sum the qty key, I need to sum key except the product_tmpl_id
which is the criteria to group by
c = defaultdict(float)
for d in list_:
c[d['product_tmpl_id']] += d['qty']
c = [{'product_id': id, 'qty': qty} for id, qty in c.items()]
I know how to do it with a for iteration but trying to look for a more pythonic way
thanks
EDIT:
What is need is to pass from this:
lst = [
{'Name': 'A', 'qty':100,'price':10},
{'Name': 'A', 'qty':100,'price':10},
{'Name': 'A', 'qty':100,'price':10},
{'Name': 'B', 'qty':100,'price':10},
{'Name': 'C', 'qty':100,'price':10},
{'Name': 'C', 'qty':100,'price':10},
]
to this
group_lst = [
{'Name': 'A', 'qty':300,'price':30},
{'Name': 'B', 'qty':100,'price':10},
{'Name': 'C', 'qty':200,'price':20},
]
Using basic Python, this doesn't get a whole lot better. You could hack something together with itertools.groupby
, but it'd be ugly and probably slower, certainly less clear.
As @9769953 suggested, though, Pandas is a good package to handle this sort of structured, tabular data.
In [1]: import pandas as pd
In [2]: df = pd.DataFrame(lst)
Out[2]:
Name price qty
0 A 10 100
1 A 10 100
2 A 10 100
3 B 10 100
4 C 10 100
5 C 10 100
In [3]: df.groupby('Name').agg(sum)
Out[3]:
price qty
Name
A 30 300
B 10 100
C 20 200
You just need a little extra mojo if you don't want to keep the data as a dataframe:
In [4]: grouped = df.groupby('Name', as_index=False).agg(sum)
In [5]: list(grouped.T.to_dict().values())
Out[5]:
[{'Name': 'A', 'price': 30, 'qty': 300},
{'Name': 'B', 'price': 10, 'qty': 100},
{'Name': 'C', 'price': 20, 'qty': 200}]
On the verbose side, but gets the job done:
group_lst = []
lst_of_names = []
for item in lst:
qty_total = 0
price_total = 0
# Get names that have already been totalled
lst_of_names = [item_get_name['Name'] for item_get_name in group_lst]
if item['Name'] in lst_of_names:
continue
for item2 in lst:
if item['Name'] == item2['Name']:
qty_total += item2['qty']
price_total += item2['price']
group_lst.append(
{
'Name':item['Name'],
'qty':qty_total,
'price':price_total
}
)
pprint(group_lst)
Output:
[{'Name': 'A', 'price': 30, 'qty': 300},
{'Name': 'B', 'price': 10, 'qty': 100},
{'Name': 'C', 'price': 20, 'qty': 200}]
You can use defaultdict
and Counter
>>> from collections import Counter, defaultdict
>>> cntr = defaultdict(Counter)
>>> for d in lst:
... cntr[d['Name']].update(d)
...
>>> res = [dict(v, **{'Name':k}) for k,v in cntr.items()]
>>> pprint(res)
[{'Name': 'A', 'price': 30, 'qty': 300},
{'Name': 'C', 'price': 20, 'qty': 200},
{'Name': 'B', 'price': 10, 'qty': 100}]
来源:https://stackoverflow.com/questions/50974070/what-is-the-most-efficient-way-to-sum-a-dict-with-multiple-keys-by-one-key