问题
I have a data frame where the values of column Parameters are Json data:
# Parameters
#1 {"a":0,"b":[10.2,11.5,22.1]}
#2 {"a":3,"b":[4.0,6.2,-3.3]}
...
I want to extract the parameters of each row and append them to the data frame as columns A, B1, B2 and B3.
How can I do it?
I would rather use dplyr if it is possible and efficient.
回答1:
In your example data, each row contains a json object. This format is called jsonlines aka ndjson, and the jsonlite package has a special function stream_in
to parse such data into a data frame:
# Example data
mydata <- data.frame(parameters = c(
'{"a":0,"b":[10.2,11.5,22.1]}',
'{"a":3,"b":[4.0,6.2,-3.3]}'
), stringsAsFactors = FALSE)
# Parse json lines
res <- jsonlite::stream_in(textConnection(mydata$parameters))
# Extract columns
a <- res$a
b1 <- sapply(res$b, "[", 1)
b2 <- sapply(res$b, "[", 2)
b3 <- sapply(res$b, "[", 3)
In your example, the json structure is fairly simple so the other suggestions work as well, but this solution will generalize to more complex json structures.
回答2:
I actually had a similar problem where I had multiple variables in a data frame which were JSON objects and a lot of them were NA's, but I did not want to remove the rows where NA's existed. I wrote a function which is passed a data frame, id within the data frame(usually a record ID), and the variable name in quotes to parse. The function will create two subsets, one for records which contain JSON objects and another to keep track of NA value records for the same variable then it joins those data frames and joins their combination to the original data frame thereby replacing the former variable. Perhaps it will help you or someone else as it has worked for me in a few cases now. I also haven't really cleaned it up too much so I apologize if my variable names are a bit confusing as well as this was a very ad-hoc function I wrote for work. I also should state that I did use another poster's idea for replacing the former variable with the new variables created from the JSON object. You can find that here : Add (insert) a column between two columns in a data.frame
One last note: there is a package called tidyjson which would've had a simpler solution but apparently cannot work with list type JSON objects. At least that's my interpretation.
library(jsonlite)
library(stringr)
library(dplyr)
parse_var <- function(df,id, var) {
m <- df[,var]
p <- m[-which(is.na(m))]
n <- df[,id]
key <- n[-which(is.na(df[,var]))]
#create df for rows which are NA
key_na <- n[which(is.na(df[,var]))]
q <- m[which(is.na(m))]
parse_df_na <- data.frame(key_na,q,stringsAsFactors = FALSE)
#Parse JSON values and bind them together into a dataframe.
p <- lapply(p,function(x){
fromJSON(x) %>% data.frame(stringsAsFactors = FALSE)}) %>% bind_rows()
#bind the record id's of the JSON values to the above JSON parsed dataframe and name the columns appropriately.
parse_df <- data.frame(key,p,stringsAsFactors = FALSE)
## The new variables begin with a capital 'x' so I replace those with my former variables name
n <- names(parse_df) %>% str_replace('X',paste(var,".",sep = ""))
n <- n[2:length(n)]
colnames(parse_df) <- c(id,n)
#join the dataframe for NA JSON values and the dataframe containing parsed JSON values, then remove the NA column,q.
parse_df <- merge(parse_df,parse_df_na,by.x = id,by.y = 'key_na',all = TRUE)
#Remove the new column formed by the NA values#
parse_df <- parse_df[,-which(names(parse_df) =='q')]
####Replace variable that is being parsed in dataframe with the new parsed and names values.######
new_df <- data.frame(append(df,parse_df[,-which(names(parse_df) == id)],after = which(names(df) == var)),stringsAsFactors = FALSE)
new_df <- new_df[,-which(names(new_df) == var)]
return(new_df)
}
来源:https://stackoverflow.com/questions/32135228/extract-json-data-from-the-rows-of-an-r-data-frame