Python分布式爬虫必学框架scrapy打造搜索引擎✍✍✍

夙愿已清 提交于 2019-12-02 05:57:38

Python分布式爬虫必学框架scrapy打造搜索引擎

 

Python分布式爬虫打造搜索引擎Scrapy精讲—用Django实现搜索的自动补全功能

 

 

 

 

 

elasticsearch(搜索引擎)提供了自动补全接口

 

 

 

1、创建搜索自动补全字段suggest

 

自动补全需要用到一个字段名称为suggest类型为Completion类型的一个字段

 

所以我们需要用将前面的elasticsearch-dsl操作elasticsearch(搜索引擎)增加suggest类型为Completion

 

注意:因为elasticsearch-dsl源码问题,设置字段为Completion类型指定分词器时会报错,所以我们需要重写CustomAnalyzer类

 

只有Completion类型才是,其他类型不用,其他类型直接指定分词器即可

 

 

 

#!/usr/bin/env python

 

 

 

from datetime import datetime

 

from elasticsearch_dsl import DocType, Date, Nested, Boolean, \

 

    analyzer, InnerObjectWrapper, Completion, Keyword, Text, Integer

 

 

 

# 更多字段类型见第三百六十四节elasticsearch(搜索引擎)mapping映射管理

 

from elasticsearch_dsl.analysis import CustomAnalyzer as _CustomAnalyzer    #导入CustomAnalyzer

 

 

 

from elasticsearch_dsl.connections import connections                       # 导入连接elasticsearch(搜索引擎)服务器方法

 

connections.create_connection(hosts=['127.0.0.1'])

 

 

 

 

 

class CustomAnalyzer(_CustomAnalyzer):                                      # 自定义CustomAnalyzer类,来重写CustomAnalyzer

 

    def get_analysis_definition(self):

 

        return {}

 

 

 

ik_analyzer = CustomAnalyzer("ik_max_word", filter=["lowercase"])           # 实例化重写的CustomAnalyzer类传入分词器和大小写转,将大写转换成小写

 

 

 

 

 

class lagouType(DocType):                                                   # 自定义一个类来继承DocType

 

    suggest = Completion(analyzer=ik_analyzer)

 

    # Text类型需要分词,所以需要知道中文分词器,ik_max_wordwei为中文分词器

 

    title = Text(analyzer="ik_max_word")                                    # 设置,字段名称=字段类型,Text为字符串类型并且可以分词建立倒排索引

 

    description = Text(analyzer="ik_max_word")

 

    keywords = Text(analyzer="ik_max_word")

 

    url = Keyword()                                                         # 设置,字段名称=字段类型,Keyword为普通字符串类型,不分词

 

    riqi = Date()                                                           # 设置,字段名称=字段类型,Date日期类型

 

 

 

    class Meta:                                                             # Meta是固定写法

 

        index = "lagou"                                                     # 设置索引名称(相当于数据库名称)

 

        doc_type = 'biao'                                                   # 设置表名称

 

 

 

if __name__ == "__main__":          # 判断在本代码文件执行才执行里面的方法,其他页面调用的则不执行里面的方法

 

    lagouType.init()                # 生成elasticsearch(搜索引擎)的索引,表,字段等信息

 

 

 

 

 

# 使用方法说明:

 

# 在要要操作elasticsearch(搜索引擎)的页面,导入此模块

 

# lagou = lagouType()           #实例化类

 

# lagou.title = ''            #要写入字段=

 

# lagou.description = ''

 

# lagou.keywords = ''

 

# lagou.url = ''

 

# lagou.riqi = ''

 

# lagou.save()                  #将数据写入elasticsearch(搜索引擎)

 

 

 

 

 

 

 

2、搜索自动补全字段suggest写入数据

 

搜索自动补全字段suggest接收的要搜索的字段分词数据,详情见下面的自定义分词函数

 

 

 

elasticsearch-dsl操作elasticsearch(搜索引擎)

 

 

 

#!/usr/bin/env python

 

# -*- coding:utf8 -*-

 

#!/usr/bin/env python

 

 

 

from datetime import datetime

 

from elasticsearch_dsl import DocType, Date, Nested, Boolean, \

 

    analyzer, InnerObjectWrapper, Completion, Keyword, Text, Integer

 

from elasticsearch_dsl.connections import connections                       # 导入连接elasticsearch(搜索引擎)服务器方法

 

# 更多字段类型见第三百六十四节elasticsearch(搜索引擎)mapping映射管理

 

from elasticsearch_dsl.analysis import CustomAnalyzer as _CustomAnalyzer    #导入CustomAnalyzer

 

 

 

connections.create_connection(hosts=['127.0.0.1'])

 

 

 

 

 

class CustomAnalyzer(_CustomAnalyzer):                                      # 自定义CustomAnalyzer类,来重写CustomAnalyzer

 

    def get_analysis_definition(self):

 

        return {}

 

 

 

ik_analyzer = CustomAnalyzer("ik_max_word", filter=["lowercase"])           # 实例化重写的CustomAnalyzer类传入分词器和大小写转,将大写转换成小写

 

 

 

 

 

class lagouType(DocType):                                                   # 自定义一个类来继承DocType

 

    suggest = Completion(analyzer=ik_analyzer)

 

    # Text类型需要分词,所以需要知道中文分词器,ik_max_wordwei为中文分词器

 

    title = Text(analyzer="ik_max_word")                                    # 设置,字段名称=字段类型,Text为字符串类型并且可以分词建立倒排索引

 

    description = Text(analyzer="ik_max_word")

 

    keywords = Text(analyzer="ik_max_word")

 

    url = Keyword()                                                         # 设置,字段名称=字段类型,Keyword为普通字符串类型,不分词

 

    riqi = Date()                                                           # 设置,字段名称=字段类型,Date日期类型

 

 

 

    class Meta:                                                             # Meta是固定写法

 

        index = "lagou"                                                     # 设置索引名称(相当于数据库名称)

 

        doc_type = 'biao'                                                   # 设置表名称

 

 

 

 

 

def gen_suggest(index, info_tuple):

 

    # 根据字符串生成搜索建议数组

 

    """

 

    此函数主要用于,连接elasticsearch(搜索引擎),使用ik_max_word分词器,将传入的字符串进行分词,返回分词后的结果

 

    此函数需要两个参数:

 

    第一个参数:要调用elasticsearch(搜索引擎)分词的索引index,一般是(索引操作类._doc_type.index

 

    第二个参数:是一个元组,元祖的元素也是元组,元素元祖里有两个值一个是要分词的字符串,第二个是分词的权重,多个分词传多个元祖如下

 

    书写格式:

 

    gen_suggest(lagouType._doc_type.index, (('字符串', 10),('字符串', 8)))

 

    """

 

    es = connections.create_connection(lagouType._doc_type.using)       # 连接elasticsearch(搜索引擎),使用操作搜索引擎的类下面的_doc_type.using连接

 

    used_words = set()

 

    suggests = []

 

    for text, weight in info_tuple:

 

        if text:

 

            # 调用esanalyze接口分析字符串,

 

            words = es.indices.analyze(index=index, analyzer="ik_max_word", params={'filter':["lowercase"]}, body=text)

 

            anylyzed_words = set([r["token"] for r in words["tokens"] if len(r["token"])>1])

 

            new_words = anylyzed_words - used_words

 

        else:

 

            new_words = set()

 

 

 

        if new_words:

 

            suggests.append({"input":list(new_words), "weight":weight})

 

 

 

    # 返回分词后的列表,里面是字典,

 

    # 如:[{'input': ['录音', '广告'], 'weight': 10}, {'input': ['新能源', '汽车',], 'weight': 8}]

 

    return suggests

 

 

 

 

 

if __name__ == "__main__":          # 判断在本代码文件执行才执行里面的方法,其他页面调用的则不执行里面的方法

 

    lagouType.init()                # 生成elasticsearch(搜索引擎)的索引,表,字段等信息

 

# 使用方法说明:

 

# 在要要操作elasticsearch(搜索引擎)的页面,导入此模块

 

# lagou = lagouType()           #实例化类

 

# lagou.title = ''            #要写入字段=

 

# lagou.description = ''

 

# lagou.keywords = ''

 

# lagou.url = ''

 

# lagou.riqi = ''

 

# lagou.save()                  #将数据写入elasticsearch(搜索引擎)

 

 

 

 

 

suggest字段写入数据

 

 

 

# -*- coding: utf-8 -*-

 

 

 

# Define here the models for your scraped items

 

#

 

# See documentation in:

 

# http://doc.scrapy.org/en/latest/topics/items.html

 

# items.py,文件是专门用于,接收爬虫获取到的数据信息的,就相当于是容器文件

 

 

 

import scrapy

 

from scrapy.loader.processors import MapCompose, TakeFirst

 

from scrapy.loader import ItemLoader                            # 导入ItemLoader类也就加载items容器类填充数据

 

from adc.models.elasticsearch_orm import lagouType, gen_suggest  # 导入elasticsearch操作模块

 

 

 

 

 

class LagouItemLoader(ItemLoader):                  # 自定义Loader继承ItemLoader类,在爬虫页面调用这个类填充数据到Item

 

    default_output_processor = TakeFirst()          # 默认利用ItemLoader类,加载items容器类填充数据,是列表类型,可以通过TakeFirst()方法,获取到列表里的内容

 

 

 

 

 

def tianjia(value):                                 # 自定义数据预处理函数

 

    return value                                    # 将处理后的数据返给Item

 

 

 

 

 

class LagouItem(scrapy.Item):                       # 设置爬虫获取到的信息容器类

 

    title = scrapy.Field(                           # 接收爬虫获取到的title信息

 

        input_processor=MapCompose(tianjia),        # 将数据预处理函数名称传入MapCompose方法里处理,数据预处理函数的形式参数value会自动接收字段title

 

    )

 

    description = scrapy.Field()

 

    keywords = scrapy.Field()

 

    url = scrapy.Field()

 

    riqi = scrapy.Field()

 

 

 

    def save_to_es(self):

 

        lagou = lagouType()                         # 实例化elasticsearch(搜索引擎对象)

 

        lagou.title = self['title']                 # 字段名称=

 

        lagou.description = self['description']

 

        lagou.keywords = self['keywords']

 

        lagou.url = self['url']

 

        lagou.riqi = self['riqi']

 

        # titlekeywords数据传入分词函数,进行分词组合后返回写入搜索建议字段suggest

 

        lagou.suggest = gen_suggest(lagouType._doc_type.index, ((lagou.title, 10),(lagou.keywords, 8)))

 

        lagou.save()                                # 将数据写入elasticsearch(搜索引擎对象)

 

        return

 

 

 

 

 

写入elasticsearch(搜索引擎)后的情况

 

 

 

{

 

    "_index": "lagou",

 

    "_type": "biao",

 

    "_id": "AV5MDu0NXJs9MkF5tFxW",

 

    "_version": 1,

 

    "_score": 1,

 

    "_source": {

 

        "title": "LED光催化灭蚊灯广告录音_广告录音网-火红广告录音_叫卖录音下载_语音广告制作",

 

        "keywords": "各类小商品,广告录音,叫卖录音,火红广告录音",

 

        "url": "http://www.luyin.org/post/2486.html",

 

        "suggest": [

 

            {

 

                "input": [

 

                    "广告"

 

                    ,

 

                    "火红"

 

                    ,

 

                    "制作"

 

                    ,

 

                    "叫卖"

 

                    ,

 

                    "灭蚊灯"

 

                    ,

 

                    "语音"

 

                    ,

 

                    "下载"

 

                    ,

 

                    "led"

 

                    ,

 

                    "录音"

 

                    ,

 

                    "灭蚊"

 

                    ,

 

                    "光催化"

 

                    ,

 

                    "催化"

 

                ],

 

                "weight": 10

 

            }

 

            ,

 

            {

 

                "input": [

 

                    "小商品"

 

                    ,

 

                    "广告"

 

                    ,

 

                    "各类"

 

                    ,

 

                    "火红"

 

                    ,

 

                    "叫卖"

 

                    ,

 

                    "商品"

 

                    ,

 

                    "小商"

 

                    ,

 

                    "录音"

 

                ],

 

                "weight": 8

 

            }

 

        ],

 

        "riqi": "2017-09-04T16:43:20",

 

        "description": "LED光催化灭蚊灯广告录音 是广告录音网-火红广告录音中一篇关于 各类小商品 的文章,欢迎您阅读和评论,专业叫卖录音-广告录音-语音广告制作"

 

    }

 

}

 

 

 

 

 

 

 

 

 

Django实现搜索的自动补全功能说明

 

1.将搜索框绑定一个事件,每输入一个字触发这个事件,获取到输入框里的内容,用ajax将输入的词请求到Django的逻辑处理函数。

 

2.在逻辑处理函数里,将请求词用elasticsearch(搜索引擎)的fuzzy模糊查询,查询suggest字段里存在请求词的数据,将查询到的数据添加到自动补全

 

html代码:

 

 

 

<!DOCTYPE html >

 

<html xmlns="http://www.w3.org/1999/xhtml">

 

{#引入静态文件路径#}

 

{% load staticfiles %}

 

<head>

 

<meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />

 

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 

<title>lcv-search 搜索引擎</title>

 

<link href="{% static 'css/style.css'%}" rel="stylesheet" type="text/css" />

 

<link href="{% static 'css/index.css'%}" rel="stylesheet" type="text/css" />

 

</head>

 

<body>

 

<div id="container">

 

    <div id="bd">

 

        <div id="main">

 

            <h1 class="title">

 

                <div class="logo large"></div>

 

            </h1>

 

            <div class="nav ue-clear">

 

                <ul class="searchList">

 

                    <li class="searchItem current" data-type="article">文章</li>

 

                    <li class="searchItem" data-type="question">问答</li>

 

                    <li class="searchItem" data-type="job">职位</li>

 

                </ul>

 

            </div>

 

            <div class="inputArea">

 

                {% csrf_token %}

 

                <input type="text" class="searchInput" />

 

                <input type="button" class="searchButton" onclick="add_search()" />

 

                <ul class="dataList">

 

                    <li>如何学好设计</li>

 

                    <li>界面设计</li>

 

                    <li>UI设计培训要多少钱</li>

 

                    <li>设计师学习</li>

 

                    <li>哪里有好的网站</li>

 

                </ul>

 

            </div>

 

 

 

            <div class="historyArea">

 

                <p class="history">

 

                    <label>热门搜索:</label>

 

                    

 

                </p>

 

                <p class="history mysearch">

 

                    <label>我的搜索:</label>

 

                    <span class="all-search">

 

                        <a href="javascript:;">专注界面设计网站</a>

 

                        <a href="javascript:;">用户体验</a>

 

                        <a href="javascript:;">互联网</a>

 

                        <a href="javascript:;">资费套餐</a>

 

                    </span>

 

 

 

                </p>

 

            </div>

 

        </div><!-- End of main -->

 

    </div><!--End of bd-->

 

 

 

    <div class="foot">

 

        <div class="wrap">

 

            <div class="copyright">Copyright ©uimaker.com 版权所有  E-mail:admin@uimaker.com</div>

 

        </div>

 

    </div>

 

</div>

 

</body>

 

<script type="text/javascript" src="{% static 'js/jquery.js'%}"></script>

 

<script type="text/javascript" src="{% static 'js/global.js'%}"></script>

 

<script type="text/javascript">

 

    var suggest_url = "/suggest/"

 

    var search_url = "/search/"

 

 

 

 

 

    $('.searchList').on('click', '.searchItem', function(){

 

        $('.searchList .searchItem').removeClass('current');

 

        $(this).addClass('current');

 

    });

 

 

 

    function removeByValue(arr, val) {

 

      for(var i=0; i<arr.length; i++) {

 

        if(arr[i] == val) {

 

          arr.splice(i, 1);

 

          break;

 

        }

 

      }

 

    }

 

 

 

 

 

    // 搜索建议

 

    $(function(){

 

        $('.searchInput').bind(' input propertychange ',function(){

 

            var searchText = $(this).val();

 

            var tmpHtml = ""

 

            $.ajax({

 

                cache: false,

 

                type: 'get',

 

                dataType:'json',

 

                url:suggest_url+"?s="+searchText+"&s_type="+$(".searchItem.current").attr('data-type'),

 

                async: true,

 

                success: function(data) {

 

                    for (var i=0;i<data.length;i++){

 

                        tmpHtml += '<li><a href="'+search_url+'?q='+data[i]+'">'+data[i]+'</a></li>'

 

                    }

 

                    $(".dataList").html("")

 

                    $(".dataList").append(tmpHtml);

 

                    if (data.length == 0){

 

                        $('.dataList').hide()

 

                    }else {

 

                        $('.dataList').show()

 

                    }

 

                }

 

            });

 

        } );

 

    })

 

 

 

    hideElement($('.dataList'), $('.searchInput'));

 

 

 

</script>

 

<script>

 

    var searchArr;

 

    //定义一个search的,判断浏览器有无数据存储(搜索历史)

 

    if(localStorage.search){

 

    //如果有,转换成 数组的形式存放到searchArr的数组里(localStorage以字符串的形式存储,所以要把它转换成数组的形式)

 

        searchArr= localStorage.search.split(",")

 

    }else{

 

    //如果没有,则定义searchArr为一个空的数组

 

        searchArr = [];

 

    }

 

    //把存储的数据显示出来作为搜索历史

 

    MapSearchArr();

 

 

 

    function add_search(){

 

        var val = $(".searchInput").val();

 

        if (val.length>=2){

 

            //点击搜索按钮时,去重

 

            KillRepeat(val);

 

            //去重后把数组存储到浏览器localStorage

 

            localStorage.search = searchArr;

 

            //然后再把搜索内容显示出来

 

            MapSearchArr();

 

        }

 

 

 

        window.location.href=search_url+'?q='+val+"&s_type="+$(".searchItem.current").attr('data-type')

 

 

 

    }

 

 

 

    function MapSearchArr(){

 

        var tmpHtml = "";

 

        var arrLen = 0

 

        if (searchArr.length >= 5){

 

            arrLen = 5

 

        }else {

 

            arrLen = searchArr.length

 

        }

 

        for (var i=0;i<arrLen;i++){

 

            tmpHtml += '<a href="'+search_url+'?q='+searchArr[i]+'">'+searchArr[i]+'</a>'

 

        }

 

        $(".mysearch .all-search").html(tmpHtml);

 

    }

 

    //去重

 

    function KillRepeat(val){

 

        var kill = 0;

 

        for (var i=0;i<searchArr.length;i++){

 

            if(val===searchArr[i]){

 

                kill ++;

 

            }

 

        }

 

        if(kill<1){

 

            searchArr.unshift(val);

 

        }else {

 

            removeByValue(searchArr, val)

 

            searchArr.unshift(val)

 

        }

 

    }

 

 

 

 

 

</script>

 

</html>

 

 

 

 

 

Django路由映射

 

 

 

"""pachong URL Configuration

 

 

 

The `urlpatterns` list routes URLs to views. For more information please see:

 

    https://docs.djangoproject.com/en/1.10/topics/http/urls/

 

Examples:

 

Function views

 

    1. Add an import:  from my_app import views

 

    2. Add a URL to urlpatterns:  url(r'^$', views.home, name='home')

 

Class-based views

 

    1. Add an import:  from other_app.views import Home

 

    2. Add a URL to urlpatterns:  url(r'^$', Home.as_view(), name='home')

 

Including another URLconf

 

    1. Import the include() function: from django.conf.urls import url, include

 

    2. Add a URL to urlpatterns:  url(r'^blog/', include('blog.urls'))

 

"""

 

from django.conf.urls import url

 

from django.contrib import admin

 

from app1 import views

 

 

 

urlpatterns = [

 

    url(r'^admin/', admin.site.urls),

 

    url(r'^$', views.indexluoji),

 

    url(r'^index/', views.indexluoji),

 

    url(r'^suggest/$', views.suggestluoji,name="suggest"),     # 搜索字段补全请求

 

 

 

]

 

 

 

 

 

Django静态文件配置

 

 

 

# Static files (CSS, JavaScript, Images)

 

# https://docs.djangoproject.com/en/1.10/howto/static-files/

 

#配置静态文件前缀

 

STATIC_URL = '/static/'

 

#配置静态文件目录

 

STATICFILES_DIRS = [

 

    os.path.join(BASE_DIR, 'static')

 

]

 

 

 

 

 

 

 

备注:搜索自动补全fuzzy查询

 

 

 

#搜索自动补全fuzzy查询

 

POST lagou/biao/_search?pretty

 

{

 

  "suggest":{          #字段名称

 

    "my_suggest":{       #自定义变量

 

      "text":"广告",      #搜索词

 

      "completion":{

 

        "field":"suggest",  #搜索字段

 

        "fuzzy":{

 

          "fuzziness":1    #编辑距离

 

        }

 

      }

 

    }

 

  },

 

  "_source":"title"

 

}

 

 

 

Django逻辑处理文件

 

 

 

 

 

from django.shortcuts import render

 

 

 

# Create your views here.

 

from django.shortcuts import render,HttpResponse

 

from django.views.generic.base import View

 

from app1.models import lagouType   #导入操作elasticsearch(搜索引擎)

 

import json

 

 

 

 

 

def indexluoji(request):

 

    print(request.method)  # 获取用户请求的路径

 

    return render(request, 'index.html')

 

 

 

 

 

def suggestluoji(request):                                      # 搜索自动补全逻辑处理

 

    key_words = request.GET.get('s', '')                        # 获取到请求词

 

    re_datas = []

 

    if key_words:

 

        s = lagouType.search()                                  # 实例化elasticsearch(搜索引擎)类的search查询

 

        s = s.suggest('my_suggest', key_words, completion={

 

            "field": "suggest", "fuzzy": {

 

                "fuzziness": 2

 

            },

 

            "size": 5

 

        })

 

        suggestions = s.execute_suggest()

 

        for match in suggestions.my_suggest[0].options:

 

            source = match._source

 

            re_datas.append(source["title"])

 

    return HttpResponse(json.dumps(re_datas), content_type="application/json")

 

 

 

 

 

 

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!