机器学习笔试知识点
Q1. 在回归模型中,下列哪一项在权衡欠拟合(under-fitting)和过拟合(over-fitting)中影响最大? ¶ A. 多项式阶数 B. 更新权重 w 时,使用的是矩阵求逆还是梯度下降 C. 使用常数项 答案:A 解析:选择合适的多项式阶数非常重要。如果阶数过大,模型就会更加复杂,容易发生过拟合;如果阶数较小,模型就会过于简单,容易发生欠拟合。如果有对过拟合和欠拟合概念不清楚的,见下图所示: Q2. 假设你有以下数据:输入和输出都只有一个变量。使用线性回归模型(y=wx+b)来拟合数据。那么使用留一法(Leave-One Out)交叉验证得到的均方误差是多少? A. 10/27 B. 39/27 C. 49/27 D. 55/27 答案:C 解析:留一法,简单来说就是假设有 N 个样本,将每一个样本作为测试样本,其它 N-1 个样本作为训练样本。这样得到 N 个分类器,N 个测试结果。用这 N个结果的平均值来衡量模型的性能。 对于该题,我们先画出 3 个样本点的坐标: 使用两个点进行线性拟合,分成三种情况,如下图所示: 第一种情况下,回归模型是 y = 2,误差 E1 = 1。 第二种情况下,回归模型是 y = -x + 4,误差 E2 = 2。 第三种情况下,回归模型是 y = -1/3x + 2,误差 E3 = 2/3。 则总的均方误差为: M S E = 1 3