自组织神经网络

[Deep Learning] 神经网络基础

谁都会走 提交于 2020-02-24 21:02:12
  目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网、人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革。要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念。当然,这里所说的神经网络不是生物学的神经网络,我们将其称之为人工神经网络(Artificial Neural Networks,简称ANN)貌似更为合理。神经网络最早是人工智能领域的一种算法或者说是模型,目前神经网络已经发展成为一类多学科交叉的学科领域,它也随着深度学习取得的进展重新受到重视和推崇。   为什么说是“重新”呢?其实,神经网络最为一种算法模型很早就已经开始研究了,但是在取得一些进展后,神经网络的研究陷入了一段很长时间的低潮期,后来随着Hinton在深度学习上取得的进展,神经网络又再次受到人们的重视。本文就以神经网络为主,着重总结一些相关的基础知识,然后在此基础上引出深度学习的概念,如有书写不当的地方,还请大家评批指正。 1. 神经元模型   神经元是神经网络中最基本的结构,也可以说是神经网络的基本单元,它的设计灵感完全来源于生物学上神经元的信息传播机制。我们学过生物的同学都知道,神经元有两种状态:兴奋和抑制。一般情况下,大多数的神经元是处于抑制状态,但是一旦某个神经元收到刺激,导致它的电位超过一个阈值

人工智能、机器学习及深度学习的起源和发展

风格不统一 提交于 2020-01-29 00:02:45
人工智能、机器学习及深度学习的起源和发展 发展时间线 第一阶段:人工智能起步期 1956—1980s 1956达特茅斯会议标志AI诞生 1957神经网络Perceptron被罗森布拉特发明 1970受限于计算能力,进入第一个寒冬 第二阶段:专家系统推广 1980s—1990s 1980 XCON专家系统出现,每年节约4000万美元 1986 BP ,Geoffrey Hinton提出了前馈算法,一个通过对输入数据按照重要进行排序的精准神经网络。 1989 卷积,Yann LeCun写了另外一篇旷世之作,描述了卷积神经网络。这些发现突破了计算机难以解决的问题,譬如从一张照片中找到一只猫。 1990——1991 人工智能计算机DARPA没能实现,政府投入缩减,进入第二次低谷 1997 IBM的DeepBlue战胜国际象棋冠军 1997 Schmidhuber发明了长短期记忆网络(LSTM) 第三阶段:深度学习 2000s—至今 2006 Hinton提出“深度学习”的神经网络 2011 苹果的Siri问世,技术上不断创新 2012 Google无人驾驶汽车上路(2009年宣布) 2012年,计算机视觉界顶级比赛ILSVRC中,多伦多大学Hinton团队所提出的深度卷积神经网络结构AlexNet一鸣惊人,同时也拉开了深度卷积神经网络在计算机视觉领域广泛应用的序幕。成功原因 大量数据,

自组织映射神经网络

佐手、 提交于 2019-12-05 11:26:31
原理 聚类、高维可视化、数据压缩、特征提取 自组织映射神经网络本质上是一个两层的神经网络,包含输入层和输出层(竞争层)输出层中神经元的个数通常是聚类的个数 训练时采用“竞争学习”方式,每个输入在输出层中找到一个和它最匹配的节点,称为激活节点。紧接着用随机梯度下降法更新激活节点的参数,同时,激活节点临近的点也根据他们距离激活节点的远近而适当地更新(更新方式为“墨西哥帽式”)。这种竞争可以通过神经元之间的横向抑制连接(负反馈路径)来实现。 输出层节点是有拓扑关系的(一维线阵、二维平面阵、三维栅格阵),且具有保序映射的特点 学习过程: 初始化 竞争:找到激活节点 合作:更新临界节点参数 适应:适当调整相关兴奋神经元连接权重,使获胜神经元对相似输入模型的后续应用的响应增强 迭代:回到竞争 与K均值的区别 不需要确定类的个数,因为聚类结果的实际簇数可以小于神经元的个数 K均值找到一个最相似的类后,只更新这个类参数;自组织映射神经网络更新了临近的节点。所以K均值易受噪声的影响,而后者准确性可能更低一些 自组织映射神经网络的可视化较好,具有优雅的拓扑关系图 来源: https://www.cnblogs.com/weilonghu/p/11922381.html