自适应算法

Wellner 自适应阈值二值化算法

会有一股神秘感。 提交于 2020-03-04 19:16:11
参考文档: Adaptive Thresholding for the DigitalDesk.pdf       Adaptive Thresholding Using the Integral Image.pdf 一、问题的由来 一个现实: 当用照像机拍摄一副黑纸白字的纸张时,照相机获得的图像并不是真正的黑白图像。不管从什么角度拍摄,这幅图像实际上是灰度或者彩色的。除非仔细的设置灯光,否则照相机所拍摄的放在桌子上的纸张图像并不能代表原始效果。不像在扫描仪或打印机内部,想控制好桌子表面的光源是非常困难的。这个开放的空间可能会受到台灯、吊灯、窗户、移动的影子等影响。人类的视觉系统能自动补偿这些,但是机器没有考虑到这些因素因此拍出的效果会很差。 这个问题在处理那种高对比度的艺术线条或文字时尤为突出,因为这些东西都是真正的黑色或白色。而摄像头会产生一副具有不同等级的灰度图像。许多应用都必须清楚的知道图像的那一部分是纯黑或纯白,以便将文字传递给OCR软件去识别。这些系统无法使用灰度图像(典型的是8位每像素),因此必须将他们转换为黑白图像。这有很多种方式去实现。在某些情况下,如果这些图像最终是给人看的,这些图像会使用一些抖动技术,以便使他们看起来更像灰度图像。但是对于机器处理的过程,比如文字识别,选择复制操作,或多个图像合成,系统就不可以使用抖动的图像。系统仅仅需要简单的线条

算法学习:自适应辛普森

主宰稳场 提交于 2019-12-01 07:15:14
【定义】 【定积分】 【解决问题】 在计算机中计算出定积分的值,有可能有直接的数学题,也有可能应用到其他方面 主要就是算定积分的值(摊手) 【算法分析】 实际上就是尝试得到一个 定积分 f(x)函数约等于 定积分 g(x) 函数 而令g(x)为一个二项式 Ax^2 +Bx + c ,然后我们直接对他进行定积分得到公式 这个对这个函数在区间【a,b】区间上的积分,不断细分最终会得到一个无限接近答案的值 而在题目中,往往会有最后输出的精度要求 所以我们只需要让最终的结果满足这个精度要求即可 有点问题,就是这个精度的要求最后会不会不断的累加最后输出又有问题 【题目】 【luogu 4525】 求 【代码】 1 #include<cstdio> 2 #include<cstdlib> 3 #include<algorithm> 4 #include<iostream> 5 using namespace std; 6 const double eps = 1e-9; 7 double a, b, c, d, l, r; 8 double f(double x) 9 { 10 return (c*x + d) / (a*x + b); 11 } 12 double simp(double l, double r) 13 { 14 double mid = (l + r) / 2; 15