中频信号

基于AD6655的数字直放站系统的设计

て烟熏妆下的殇ゞ 提交于 2020-02-16 08:07:35
基于AD6655的数字直放站系统的设计 http://www.c114.net ( 2009/5/18 13:23 ) 1 引言 随着 移动通信 业务的迅猛发展, 直放站 作为改善 移动 网信号弱区盲区的重要设备,以其具有投资较少、结构简单、安装方便灵活等优点广泛应用于2G移动网。而目前2G 网络 仍使用模拟设备的直放站。对于第三代移动通信系统,各国提出了多种不同标准,但要统一标准非常困难。未来的移动通信系统存在着多频、多模、多体制和多标准等问题,这就限制了各种设备的互通和兼容,因此对 软件无线电 技术在直放站中的应用提出了切实需求。为了提高 3G 直放站的性价比,采用数字技术统一3G直放站的硬件平台是一种较好的解决方案。这里提出了一种以AD6655为数字中频信号采集系统核心的通用、可扩展的硬件平台设计。 2 AD6655简介 2.1 性能特性 AD6655是 ADI 公司的一款高度集成的分集接收机,内置有低延迟的峰值检测器、RMS信号功率 监测 器、两个14bit的A/D转换器以及一个数字下变频转换器(DDC)。AD6655采用1.8 V和3.3 V供电电源;当工作在32.7~70 MHz带宽内,采样速率为150 MS/s时,SNR为74.0 dBc;而在70MHz带宽内,SFDR为84 dBc。因此,该器件适用于TD-SCDMA、 WCDMA 、 CDMA2000 、

超外差【整理】

邮差的信 提交于 2020-02-10 05:26:12
超外差:本振F超过接收F一个中频,f收=f本-f中 超内差:接收F超过本振F一个中频,f收=f本+f中 外差接收机中有一个荡器叫本机振荡器。它产生的高频电磁波与所接收的高频信号混合而产生一个差频,这个差频就是中频。如要接收的信号是900KHZ.本振频率是1365KHZ.两频率混合后就可以产生一个465KHZ或者2200KHZ的差频。接收机中用LC电路选择465KHZ作为中频信号。因为本振频率比外来信号高465KHZ所以叫超外差 超外差接收机中有一个振荡器叫本机振荡器。它产生的高频电磁波与所接收的高频信号混合而产生一个差频,这个差频就是中频。如要接收的信号是900KHZ.本振频率是1365KHZ.两频率混合后就可以产生一个465KHZ或者2265KHZ的差频。接收机中用LC电路选择465KHZ作为中频信号。超外差(superheterodyne)原是超声外差(supersonic heterodyne)的缩写,并非指本振源频率比信号频率高。 超外差结构是在通信收发机中最为广泛使用的一种结构,其外差过程在接收机中是从天线接收的信号与本地振荡器(local oscillator,LO)产生的信号一起输入到一非线性器件得到中频信号,或在发射机中将中频变为射频信号。这个执行外差过程的非线性器件称为混频器或者变频器。在超外差收发机中,频率的搬移过程可能不止发生一次

gnuradio 中频信号

坚强是说给别人听的谎言 提交于 2020-02-10 05:22:15
gnuradio中频信号 sdr设备只能输出的频率范围只能输出采样率宽度的信号。如果要采集超出这个范围的信号,就要调整中频信号。让带宽覆盖要采集的频率。 来源: https://www.cnblogs.com/xuxiao951/p/11326770.html

零中频接收机主要问题

与世无争的帅哥 提交于 2019-12-30 23:42:47
直流偏差和本振泄漏问题基本不会影响超外差式接收机的性能,问题主要是镜频抑制。需要高Q值的带通滤波器。 零中频不存在镜频干扰,可以省掉镜像抑制滤波器和中频滤波器。零中频的主要问题是:1直流偏差 2本振泄漏 3 闪烁噪声。 1 本振泄漏 本振耦合到混频器的射频口,通过低噪放到接收天线。 2。耦次失真 超外差接收机对奇次互调较为敏感,零中频对偶次互调失真较为敏感。LNA存在偶次失真,特性为 若存在两个强干扰信号 回波信号包含 项,说明两个高频干扰经过偶次失真会产生一个低频干扰,对接收机造成影响 偶次失真的另一种表现为RF信号的二次谐波和本振的二次谐波混频后,下变频到基带,与基带信号重叠。解决办法是在LNA和混频器中使用全差分结构。 直流偏差 本振信号通过各种途径进入混频器的RF端 混频后产生直流 接收的RF信号进入混频器的本振端,混频产生直流。 上述的直流偏差对基带信号构成干扰,一般大于接收机的噪声,使SNR降低,过大的直流偏差可能使混频后的各级放大器饱合。 消除直流偏差: 1 交流耦合 会影响直流附近的基带信号 2。谐波混频 IQ失配 参考文献 李智群,王志功. 零中频射频接收机技术[J]. 电子产品世界,2004,(13):69-72. 来源: https://www.cnblogs.com/hiramlee0534/p/6309093.html

零中频架构,这个帖子讲透了

允我心安 提交于 2019-12-06 15:08:18
零中频(ZIF)架构自无线电初期即已出现。如今,ZIF架构可以在几乎所有消费无线电应用中找到,无论是电视、手机,还是蓝牙技术。ZIF技术取得的最新进步对现有高性能无线电架构形成了挑战,其带来的新产品取得了性能上的突破,能够实现ZIF技术以前望尘莫及的新型应用。本文将探讨ZIF架构的诸多优势,介绍这些优势如何使无线电设计性能达到的新高度。 无线电工程师面临的挑战 不断增多的需求给当今的收发器架构师带来了挑战,因为我们对无线设备和应用的需求呈持续增长之势。结果,消费者需要持续访问更多的带宽。 数年以来,设计师已经从单载波无线电走向多载波无线电技术。当一个频段的频谱被全部占用时,就分配新的频段;目前,必须为40多个无线频段提供服务。由于运营商在多个频段都有频谱,并且这些资源必须协调起来,所以,如今的趋势是走向载波聚合,而载波聚合则会导致多频段无线电。这又会带来更多的无线电,其性能更高,需要更优秀的带外抑制性能,更出色的辐射性能,以及更低的功耗水平。 虽然无线需求在快速增长,但功耗和空间预算并未增长。事实上,在功耗和空间节省需求不断增强的条件下,同时降低碳排放和物理尺寸非常重要。为了实现这些目标,需要从新的视角去认识无线电架构和分区。 集成 为了增加特定设计中的无线电数目,必须减小每件无线电器件的尺寸。传统方法是逐步把更多的设计集成到一片硅片当中。虽然从数字角度来看,这样做可能是合理的

中频信号

▼魔方 西西 提交于 2019-12-06 08:01:06
中频信号 射频信号就是高频信号,就是我们所说的电磁波.可以向空间辐射. 视频信号就是图像信号. 中频信号是高频信号经过变频而获得的一种信号.为了使放大器的稳定的工作和减小干扰.一般的接收机都要将高频信号变为中频信号.电视机的图像中频信号是38MHZ.音频的中频信号是6.5MHZ. 中短波收音机的中频信号是465KC 调频收音机的中频是10.7MHZ 射频是指发射频率,因为有些信号本身可能不太适合直接发射出去(频率非法,或信号本身条件不允许)。所以要将信号调制,调制器本身需要一个适合的震荡信号,将原信号加在上面,这个震荡信号叫载波,调制后的载波就包含了原信号的信息,发射出去就叫电波。所以,射频信号就是经过调制的,拥有一定发射频率的电波。也就是说“我要发50M的数据,到天线上发出的信号不是50M的,要经过功率放大,把频率升到6G(这是L波段),在发往卫星,这个6G的电波就是射频信号。” 无线电信号RF(射频)进入天线,转换为IF (中频),再转换为基带(I,Q信号),但仍然是较低的频率。 接收: 射频 -> 中频 -> 基带 发射: 基带 -> 中频 -> 射频 传统接收在射频信号和基带之间的转换分为多步(一下变,二下变)进行,首先:射频和中频之间转换,然后中频和基带间转换。(中间要转就得有滤波,SAW ) 一种新的基于改进PASTd的中频信号盲信噪比估计算法:

射频芯片,最全介绍!

六月ゝ 毕业季﹏ 提交于 2019-12-05 16:40:33
一部可支持打电话、发短信、网络服务、APP应用的手机,通常包含五个部分:射频、基带、电源管理、外设、软件。 射频: 一般是信息发送和接收的部分; 基带: 一般是信息处理的部分; 电源管理: 一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要; 外设: 一般包括LCD,键盘,机壳等; 软件: 一般包括系统、驱动、中间件、应用。 在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系? 射频芯片和基带芯片的关系 射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。 基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。 但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。 言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片

干货 | 关于射频芯片最详细解读

☆樱花仙子☆ 提交于 2019-12-03 14:05:53
传统来说,一部可支持打电话、发短信、网络服务、APP应用的手机,一般包含五个部分部分:射频部分、基带部分、电源管理、外设、软件。 射频部分:一般是信息发送和接收的部分; 基带部分:一般是信息处理的部分; 电源管理:一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要; 外设:一般包括LCD,键盘,机壳等; 软件:一般包括系统、驱动、中间件、应用。 在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系? 先讲一下历史,射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。 基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。 但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。 言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片

射频芯片,最全介绍!

拥有回忆 提交于 2019-11-26 19:27:03
一部可支持打电话、发短信、网络服务、APP应用的手机,通常包含五个部分:射频、基带、电源管理、外设、软件。 射频: 一般是信息发送和接收的部分; 基带: 一般是信息处理的部分; 电源管理: 一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要; 外设: 一般包括LCD,键盘,机壳等; 软件: 一般包括系统、驱动、中间件、应用。 在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系? 射频芯片和基带芯片的关系 射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。 基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。 但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。 言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片

gnuradio 中频信号

末鹿安然 提交于 2019-11-26 16:41:10
gnuradio中频信号 sdr设备只能输出的频率范围只能输出采样率宽度的信号。如果要采集超出这个范围的信号,就要调整中频信号。让带宽覆盖要采集的频率。 来源: https://www.cnblogs.com/xuxiao951/p/11326770.html