Use of Time-series Based Forecasting Technique for Balancing Load and Reducing Consumption of Energy in a Cloud Data Center
摘要: 由于工作负载分配不均,一些服务器变得过载,而另一些服务器仍处于欠载状态。 为了实现负载平衡,需要从过度使用的节点迁移一些虚拟机。 但是与此不同的是,本文提出了一种负载预测算法,该算法将根据系统的当前以及将来的工作量来决定是否迁移。 因此,一旦声明节点过载,我们提出的技术就不会立即启动虚拟机迁移。 我们的算法已在CloudSim中进行了仿真,并将其性能与现有的基准算法进行了比较。 结果证明,所提出的技术不仅使数据中心更节能,而且更有效地平衡了工作量。 介绍 当前的大多数研究工作[5-12]基于系统的当前利用率。 如果服务器当前过载,则VM迁移将立即启动[7]。 但是由于迁移的开销,不必要的VM迁移可能会导致违反SLA。 结果,每次VM迁移都会增加运营成本。 因此,问题在于确定何时应开始迁移,以使与SLA违规和额外能耗有关的成本降至最低。 为此,提出了一种基于时间序列的负载预测方法,该方法决定了VM迁移的决策。 当主机的利用率水平超过动态上限时,该主机将被声明为过度利用。 如果服务器现在过载,并且下一个预测的负载也大于动态上限,则将进行迁移。 负载预测模型使我们的算法能够成功减少VM迁移的数量,并通过提供绿色IT解决方案来节省能源。 相关工作 动态比较和平衡算法(DCABA)算法使用了两个云优化概念。 首先是在物理机器级别上优化云系统