用PaddlePaddle实现图像语义分割模型ICNet
3 月,跳不动了?>>> 什么是图像语义分割? 图像语意分割顾名思义是将图像像素按照表达的语义含义的不同进行分组/分割,图像语义是指对图像内容的理解,例如,能够描绘出什么物体在哪里做了什么事情等,分割是指对图片中的每个像素点进行标注,标注属于哪一类别。近年来用在无人车驾驶技术中分割街景来避让行人和车辆、医疗影像分析中辅助诊断等。 今天,我们介绍在图像语义分割任务中,如何基于图像级联网络(Image Cascade Network,ICNet)进行语义分割,相比其他分割算法,ICNet兼顾了准确率和速度。 PaddlePaddle已经将ICNet应用于工业领域,将零件质检工人从高强度、低效率的密集劳动中解放出来,有效提升企业经营效率。 图像语义分割模型ICNet的实现方法 下面向大家介绍ICNet的实现(转自PaddlePaddle Github): 运行程序示例需要使用PaddlePaddle develop最新版本。如果您的PaddlePaddle安装版本低于此要求,请按照PaddlePaddle官方文档更新安装版本。 PaddlePaddle官方文档: http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/index.html 代码结构 ├── network.py # 网络结构定义脚本 ├──