Task10.Bert
Transformer原理 论文地址:Attention Is All You Need:https://arxiv.org/abs/1706.03762 Transformer是一种完全基于Attention机制来加速深度学习训练过程的算法模型。Transformer最大的优势在于其在并行化处理上做出的贡献。 Transformer抛弃了以往深度学习任务里面使用到的 CNN 和 RNN ,目前大热的Bert就是基于Transformer构建的,这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向。 Transformer总体结构 和Attention模型一样,Transformer模型中也采用了 encoer-decoder 架构。但其结构相比于Attention更加复杂,论文中encoder层由6个encoder堆叠在一起,decoder层也一样。 对于encoder,包含两层,一个self-attention层和一个前馈神经网络,self-attention能帮助当前节点不仅仅只关注当前的词,从而能获取到上下文的语义。 decoder也包含encoder提到的两层网络,但是在这两层中间还有一层attention层,帮助当前节点获取到当前需要关注的重点内容。 现在我们知道了模型的主要组件,接下来我们看下模型的内部细节。首先