信用贷款

互联网金融做大数据风控的九种维度

本小妞迷上赌 提交于 2019-12-24 10:38:51
在互联网金融迅猛发展的背景下,风险控制问题已然成为行业焦点,基于大数据的风控模型正在成为互联网金融领域的热门战场。那么,大数据风控到底是怎么一回事呢?与传统风控相比,它又是怎样来进行风险识别的呢?本文对此进行了探讨。 大数据能够进行数据变现的商业模式目前就是两个 ,一个是 精准营销 ,典型的场景是商品推荐和精准广告投放, 另外一个是 大数据风控 ,典型的场景是互联网金融的大数据风控。 金融的 本质是风险管理 ,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控识别欺诈用户及评估用户信用等级。 传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据, 利用评分来识别客户的还款能力和还款意愿 。信用相关程度强的数据纬度为十个左右,包含 年龄、职业、收入、学历、工作单位、借贷情况、房产,汽车、单位、还贷记录 等,金融企业参考用户提交的数据进行打分,最后得到申请人的信用评分,依据评分来决定是否贷款以及贷款额度。其他同信用相关的数据还有 区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率 等。 互联网金融的大数据风控并不是完全改变传统风控,实际是丰富传统风控的数据纬度。互联网风控中, 首先还是利用信用属性强的金融数据,判断借款人的还款能力和还款意愿,然后在利用信用属性较弱的行为数据进行补充

互联网金融做大数据风控的九种维度

北城以北 提交于 2019-12-24 10:38:42
https://www.cnblogs.com/nxld/p/6364686.html 在互联网金融迅猛发展的背景下,风险控制问题已然成为行业焦点,基于大数据的风控模型正在成为互联网金融领域的热门战场。那么,大数据风控到底是怎么一回事呢?与传统风控相比,它又是怎样来进行风险识别的呢?本文对此进行了探讨。 大数据能够进行数据变现的商业模式目前就是两个 ,一个是精准营销 ,典型的场景是商品推荐和精准广告投放, 另外一个是大数据风控 ,典型的场景是互联网金融的大数据风控。 金融的 本质是风险管理 ,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控识别欺诈用户及评估用户信用等级。 传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据, 利用评分来识别客户的还款能力和还款意愿 。信用相关程度强的数据纬度为十个左右,包含年龄、职业、收入、学历、工作单位、借贷情况、房产,汽车、单位、还贷记录等,金融企业参考用户提交的数据进行打分,最后得到申请人的信用评分,依据评分来决定是否贷款以及贷款额度。其他同信用相关的数据还有区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率等。 互联网金融的大数据风控并不是完全改变传统风控,实际是丰富传统风控的数据纬度。互联网风控中,首先还是利用信用属性强的金融数据

互联网金融做大数据风控的九种维度

喜你入骨 提交于 2019-12-24 10:38:30
在互联网金融迅猛发展的背景下,风险控制问题已然成为行业焦点,基于大数据的风控模型正在成为互联网金融领域的热门战场。那么,大数据风控到底是怎么一回事呢?与传统风控相比,它又是怎样来进行风险识别的呢?本文对此进行了探讨。 大数据能够进行数据变现的商业模式目前就是两个,一个是精准营销,典型的场景是商品推荐和精准广告投放,另外一个是大数据风控,典型的场景是互联网金融的大数据风控。 金融的本质是风险管理,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控识别欺诈用户及评估用户信用等级。 传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据,利用评分来识别客户的还款能力和还款意愿。信用相关程度强的数据纬度为十个左右,包含年龄、职业、收入、学历、工作单位、借贷情况、房产,汽车、单位、还贷记录等,金融企业参考用户提交的数据进行打分,最后得到申请人的信用评分,依据评分来决定是否贷款以及贷款额度。其他同信用相关的数据还有区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率等。 互联网金融的大数据风控并不是完全改变传统风控,实际是丰富传统风控的数据纬度。互联网风控中,首先还是利用信用属性强的金融数据,判断借款人的还款能力和还款意愿,然后在利用信用属性较弱的行为数据进行补充

信用评分及模型原理解析(以P2P网贷为例)

a 夏天 提交于 2019-11-27 09:26:09
本博文将针对消费贷款领域的信用评分及其模型进行相关研究探讨。虽然人人都可以通过对借款方在Lending Club(国外最大的P2P网站)和Prosper上的历史借贷数据进行分析,但我相信,了解消费信贷行为、评分机制和贷款决策背后的工作原理可以帮助投资人更好的在市场中进行决策,获得收益。 消费信贷一直是推动世界领先国家经济转型的主要力量。在过去的50年里,消费开支也因此有所增加。根据纽约联邦储备银行家庭债务和信用季度报告,2014年8月,消费者负债总额为11.63万亿美元,其中74%为按揭和净值贷款,10%为学生贷款,8%为汽车贷款,以及6%为信用卡债务。消费信贷需求增长率极高,自动化风险评估系统势在必行。 信用评分 信用评分最早始于上世纪50年代初。信用评分最初使用 统计学方法 来区分优秀和不良贷款。最初,信用评分的重点是是否要给贷方发放贷款,后来,这种行为转变成了 申请人评分(applicant scoring) 。信用评分借着申请人评分这一项成为了一项成功的评价系统。 在信用评分中,信贷价值假设会在未来的几年保持稳定,贷方会对申请人是否会在未来的12个月内出现90天以上的逾期支付进行评估。申请成功时的最低评分界限是该分值边际良好和不良贷款几率相比而来。申请者贷款1-2年以来的数据,加上相应的信用记录将帮助建立申请者未来2年左右的申请评分模型。 行为评分(Behavioral

美国FICO评分系统简介

半城伤御伤魂 提交于 2019-11-27 09:24:54
美国的个人信用评分系统,主要是Fair IsaacCompany 推出的 FICO,评分系统也由此得名。一般来讲, 美国人经常谈到的你的得分 ,通常指的是你目前的FICO分数。而实际上, Fair Isaac 公司开发了三种不同的FICO 评分系统 ,三种评分系统分别由美国的三大信用管理局使用评分系统的名称也不同。 信用管理局名称 FICO 评分系统名称 Equifax BEACON* Experian ExperianPFair Isaac Risk Model TransUnion FICO Risk Score, Classic Fair Isaac 公司所开发的这三种评分系统使用的是相同的方法, 并且都分别经过了严格的 测试 。即使客户的历史信用数据在三个信用管理局的 数据库 中完全一致, 从不同的信用管理局的评分系统中得出的信用得分也有可能不一样, 但是相差无几。       fico评分系统全球分布图 FICO 评分系统得出的信用分数范围在300- 850分之间。分数越高, 说明客户的信用风险越小。但是分数本身并不能说明一个客户是好还是坏,贷款方通常会将分数作为参考, 来进行贷款决策。每个贷款方都会有自己的贷款策略和标准, 并且每种产品都会有自己的风险水平, 从而决定了可以接受的信用分数水平。一般地说, 如果借款人的信用评分达到680 分以上,

互联网金融做大数据风控的九种维度

若如初见. 提交于 2019-11-27 09:24:45
在互联网金融迅猛发展的背景下,风险控制问题已然成为行业焦点,基于大数据的风控模型正在成为互联网金融领域的热门战场。那么,大数据风控到底是怎么一回事呢?与传统风控相比,它又是怎样来进行风险识别的呢?本文对此进行了探讨。 大数据能够进行数据变现的商业模式目前就是两个 ,一个是 精准营销 ,典型的场景是商品推荐和精准广告投放, 另外一个是 大数据风控 ,典型的场景是互联网金融的大数据风控。 金融的 本质是风险管理 ,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控识别欺诈用户及评估用户信用等级。 传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据, 利用评分来识别客户的还款能力和还款意愿 。信用相关程度强的数据纬度为十个左右,包含 年龄、职业、收入、学历、工作单位、借贷情况、房产,汽车、单位、还贷记录等,金融企业参考用户提交的数据进行打分,最后得到申请人的信用评分,依据评分来决定是否贷款以及贷款额度。其他同信用相关的数据还有 区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率等。 互联网金融的大数据风控并不是完全改变传统风控,实际是丰富传统风控的数据纬度。互联网风控中, 首先还是利用信用属性强的金融数据,判断借款人的还款能力和还款意愿,然后在利用信用属性较弱的行为数据进行补充