数据挖掘-决策树 Decision tree
数据挖掘-决策树 Decision tree 目录 数据挖掘-决策树 Decision tree 1. 决策树概述 1.1 决策树介绍 1.1.1 决策树定义 1.1.2 本质 1.1.3 决策树的组成 1.1.4 决策树的分类 1.1.5 决策过程 1.2 决策树的优化 1.2.1 过拟合 1.3.1 剪枝 2. 理论基础 2.1 香农理论 2.1.1 信息量 2.1.2 平均信息量/信息熵 2.1.3 条件熵 2.1.4 信息增益(Information gain) 2.1.5 信息增益率 (Information Gain Ratio) 2.1.6 基尼系数 3. 决策树算法 3.1 ID3算法 3.1.1 ID3算法简述 3.1.2 熵值对决策的影响 3.1.3 算法思想 3.1.4 递归返回条件 3.1.5 算法步骤 3.1.6 ID3算法缺点 3.2 C 4.5 算法 3.2.1 为什么采用C 4.5 算法? 3.2.2 C4.5对以上缺点的改进 3.2.3 算法思想 3.2.4 算法步骤 3.2.6 决策树C4.5算法的不足与改进 3.3 CART分类/回归树 3.3.1 为什么引入CART分类/回归树 3.3.2 结点选择标准 3.3.3 CART分类树算法对连续特征和离散特征的处理 3.3.4 CART分类树算法思想 3.3.6 CART剪枝 4. 总结 4.1