显著性检验

统计学-Week12

我的梦境 提交于 2020-01-21 05:34:00
一、回归分析 1.1 主题 一元线性回归: 相关关系、最小二乘法、拟合优度检测、显著性检验、回归预测、残差分析 多元线性回归: 多重共线性、变量选择与逐步回归 二、 一元线性回归 1.1 相关关系 三、 多元线性回归 来源: CSDN 作者: kwunkau 链接: https://blog.csdn.net/qq_35906568/article/details/104035201

MATLAB概率统计函数(4)

白昼怎懂夜的黑 提交于 2019-12-24 12:06:00
4.8 假设检验 4.8.1 已知,单个正态总体的均值μ的假设检验(U检验法) 函数 ztest 格式 h = ztest(x,m,sigma) % x为正态总体的样本,m为均值μ0,sigma为标准差,显著性水平为0.05(默认值) h = ztest(x,m,sigma,alpha) % 显著性水平为 alpha [h,sig,ci,zval] = ztest(x,m,sigma,alpha,tail) %sig为观察值的概率,当sig为小概率时则对原假设提出质疑,ci为真正均值μ的 1- alpha置信区间,zval为统计量的值。 说明 若h=0 ,表示在显著性水平 alpha下,不能拒绝原假设; 若h=1 ,表示在显著性水平 alpha下,可以拒绝原假设。 原假设:, 若tail=0 , 表示备择假设:(默认,双边检验); tail=1,表示备择假设:(单边检验); tail=-1 ,表示备择假设: (单边检验)。 例 4-74 某车间用一台包装机包装葡萄糖,包得的袋装糖重是一个随机变量,它服从正态分布。当机器正常时,其均值为0.5公斤,标准差为0.015。某日开工后检验包装机是否正常,随机地抽取所包装的糖 9 袋,称得净重为(公斤) 0.497, 0.506, 0.518, 0.524, 0.498, 0.511, 0.52, 0.515, 0.512 问机器是否正常?