Explain with example: how embedding layers in keras works
I don't understand the Embedding layer of Keras. Although there are lots of articles explaining it, I am still confused. For example, the code below isfrom imdb sentiment analysis: top_words = 5000 max_review_length = 500 embedding_vecor_length = 32 model = Sequential() model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length)) model.add(LSTM(100)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) model.fit(X_train, y_train, nb_epoch=3, batch_size=64) In this code, what