你的颜值能打多少分?让飞桨来告诉你
【飞桨开发者说】钟山,中科院信工所工程师,主要研究计算机视觉、深度学习。 想必很多人都对自己的颜值到底怎样充满好奇,也有很多软件为大家提供了颜值打分的趣味功能。其实,颜值打分也可以视为一个图像分类问题,今天就向大家介绍如何利用飞桨搭建一个VGG网络,实现一个简单的颜值打分demo。 01 VGGNet介绍 VGGNet 由牛津大学的视觉几何组(Visual Geometry Group)和 Google DeepMind 公司提出,是 ILSVRC-2014 中定位任务第一名和分类任务第二名。提出 VGGNet 的主要目的是为了探究在大规模图像识别任务中,卷积网络深度对模型精确度的影响。通过VGGNet,研究人员证明了基于尺寸较小的的卷积核,增加网络深度可以有效提升模型的效果。VGGNet结构简单,模型的泛化能力好,因此受到研究人员青睐而广泛使用,到现在依然经常被用作图像特征提取。 VGGNet引入“模块化”的设计思想,将不同的层进行简单的组合构成网络模块,再用模块来组装完整网络,而不再是以“层”为单元组装网络。VGGNet有5种不同的VGGNet 配置,如上表所示。其中每一列代表一种网络配置,分别用 A~E 来表示。从表格中可以看出所有VGG配置都有五个卷积模块,模块中所有卷积都是3×3卷积核(conv3),因此特征图的尺寸在模块内不是变的,每个模块卷积之后紧接着最大池化层