图像通道

卷积神经网络CNN的可视化

▼魔方 西西 提交于 2019-12-27 03:21:14
通常我们认为深度学习模型是“黑盒”的,即模型学到的表示很难用人类可以理解的方式来提取和呈现。然而对于卷积神经网络来说却不是这样的。CNN学到的表示非常适合可视化,因为CNN本身就是 视觉概念的表示 。 CNN可视化和解释:【本文给出3个层面的可视化】 1)可视化卷积神经网络的中间输出(中间激活) 有助于理解卷积网络神经连续的层如何对输入进行变换,也有助于初步了解卷积神经网络每个过滤器的含义。 2)可视化卷积神经网络的过滤器 有助于精确理解卷积神经网络中每个过滤器容易接受的视觉模式或视觉概念。 3)可视化图像中类激活的热力图 有助于理解图像的哪个部分被识别为属于某个类别,从而可以定位图像中的物体。 一、可视化中间激活 可视化中间激活,是指对于给定输入,展示网络中各个卷积层和池化层输出的特征图(层的输出通常被称为该层的激活,即激活函数的输出)。 可视化中间激活,可以看到输入如何被分解为网络学到的不同过滤器。 从三个维度对特征图进行可视化:宽度、高度和深度(通道)。每个通道都对应相对独立的特征,所以讲这些特征图可视化的正确方法是将每个通道的内容分别绘制成二维图像。 原图如下: 第一层卷积层第4通道可视化结果: 第一层卷积层第7通道可视化结果: 第5个卷积层第5个通道可视化: 第5个卷积层的第30通道可视化: 上例中揭示了DL学到的表示存在一个重要普遍特征: 随着层数的加深

Convolution with even-sized kernels and symmetric padding论文解读笔记

一个人想着一个人 提交于 2019-12-27 02:11:10
文章目录 导读 摘要 引言 相关工作 对称填充 实验 讨论 总结 导读 我们都习惯使用3*3的卷积核,这篇文章介绍了 偶数卷积核 其实表现更强 。 首先附上文章地址: Convolution with even-sized kernels and symmetric padding 【PDF】 摘要 紧凑型卷积神经网络主要通过深度卷积,扩展的通道和复杂的拓扑来提高效率,这反过来又加剧了训练过程。 此外,在这些模型中, 3×3内核占主导地位 ,而偶数大小的内核(2×2、4×4)很少被采用。 在这项工作中,我们通过信息侵蚀假设来量化偶数大小的核卷积中发生的偏移问题,并通过在特征图的四个侧面(C2sp,C4sp)提出对称填充来消除它。 对称填充以很少的计算成本释放了偶数大小的内核的泛化能力,使其在图像分类和生成任务方面优于3×3内核。此外,C2sp获得了与新兴紧凑型模型相当的精度,而训练期间的内存和时间消耗却少得多。 对称填充和偶数卷积可以很好地实现到现有框架中,为体系结构设计提供有效的元素,尤其是在强调训练工作的在线和持续学习场合。 引言 深度卷积神经网络(CNN)在许多计算机视觉任务中都取得了重大成功,例如图像分类[37],语义分割[43],图像生成[8]和游戏[29]。 除了特定领域的应用程序之外,还设计了各种体系结构来提高CNN的性能[3,12,15]

Image Super-Resolution Using Deep Convolutional Networks 论文总结

喜夏-厌秋 提交于 2019-12-24 01:16:28
Image Super-Resolution Using Deep Convolutional Networks 论文总结 提示: 文中【】中的内容表示我没读懂的内容或不知道怎么翻译的内容 若文中有错误或知道【】中内容的正确含义,希望能在评论区中指出 Abstract 摘要讲了讲论文写了些啥: 作者提出了一种针对单图像超分辨的深度学习方法,即SRCNN。该方法直接学习低/高分辨率图像之间的端到端映射。映射是用一个低分辨率图像为输入,高分辨率图像为输出的深度卷积神经网络来表示的。 证明了传统基于稀疏编码的SR方法也可以看作是一个深度卷积网络。 传统方法是分别处理每个组件,而SRCNN联合优化所有层。 SRCNN具有轻量级的结构,同时有最先进的恢复质量,并且实现了快速的实际在线使用。 作者探索了不同的网络结构和参数设置,以实现性能和速度之间的权衡。 SRCNN可以同时处理三个颜色通道,表现出更好的整体重建质量。 Introduction 超分辨率问题本质是不适定的( inherently ill-posed)或者说超分辨率是个欠定逆问题( underdetermined inverse problem)。意思就是超分辨率是个解不是唯一的问题,因为对于任何给定的低分辨率像素都存在多重解。对于这个问题通常用强先验信息约束解空间来缓解,为了学习强先验信息,现在最先进的方法大多基于例子的策略

opencv HSV 颜色模型(H通道取值 && CV_BGR2HSV_FULL与CV_BGR2HSV的区别)

北城以北 提交于 2019-12-16 17:41:08
利用opencv把RGB图片像HSV颜色空间转变(CV_BGR2HSV)的时候, H通道的值范围为: 0-180 S: 0-255 V:0-255 利用直方图显示三个通道的时候,H通道都集中在前半部分,想让它取值范围扩大~~~~~~~ 后来发现了 CV_BGR2HSV_FULL , CV_BGR2HSV 在转换图像的时候是将 H / 2 ---> H ,我们知道图像中色相H的取值范围为 0-360 ,所以利用opencv转换之后得到的H的范围为 0-180 而 CV_BGR2HSV_FULL 实现的映射是 H * 255 / 360 --->H , 所以利用_FULL 这个转换得到的H通道图像的范围为 0-255 这两种方式都是opencv把[0-360] 的数据压缩到一个字节可以处理的数据。[ 所以这里说的图像的depth = 8, 刚好能表示的最大值是 255] 上面说的图像的 depth = 8, 如果你的图像 位深不是 8位,比如 32 位, 那么你就可以得到 [0, 360] 表示的 H通道图像了。 实际上, HSV颜色模型规定的各通道取值范围为: H : 0-360 S:0-1 V: 0-1 可以利用 CV_BGR2HSV 得到的 H S V 的  S V /255 转换得到。 对于同一幅图片: 采用CV_BGR2HSV得到的 h s v 三个通道的 直方图分布如下:

虹软人脸识别3.0 - 图像数据结构介绍(Android)

谁说胖子不能爱 提交于 2019-12-11 21:00:35
从虹软开放了2.0版本SDK以来,由于具有免费、离线使用的特点,我们公司在人脸识别门禁应用中使用了虹软SDK,识别效果还不错,因此比较关注虹软SDK的官方动态。近期上线了ArcFace 3.0 SDK版本,确实做了比较大的更新。首先本篇介绍一下关于Android平台算法的更新内容,下一篇将针对Windows平台的算法更新展开介绍。 特征比对支持比对模型选择,有 生活照比对模型 和 人证比对模型 识别率、防***效果显著提升 特征值更新,升级后人脸库需重新注册 Android平台新增64位的SDK 图像处理工具类 人脸检测同时支持全角度及单一角度 新增了一种图像数据传入方式 在实际开发过程中使用新的图像数据结构具有一定的难度,本文将从以下几点对该图像数据结构及使用方式进行详细介绍 SDK接口变动 ArcSoftImageInfo类解析 SDK相关代码解析 步长的作用 将Camera2回传的Image转换为ArcSoftImageInfo 一、SDK接口变动 在接入3.0版SDK时,发现 FaceEngine 类中的 detectFaces 、 process 、 extractFaceFeature 等传入图像数据的函数都有重载函数,重载函数的接口均使用 ArcSoftImageInfo 对象作为入参的图像数据,以人脸检测为例,具体接口如下: 原始接口: public int

1*1卷积核用法与权值共享

时光毁灭记忆、已成空白 提交于 2019-12-11 05:55:21
# **权值共享方法** 在同一特征图和不同通道特征图都使用共享权值,这样的卷积参数是最少的,例如上一层为30*30*40,当使用3*3*120的卷积核进行卷积时,卷积参数为:3*3*120个.(卷积跟mlp有区别也有联系一个神经元是平面排列,一个是线性排列) 第二种只在同一特征图上使用共享权值,根据上面的例子,则卷积参数为:3*3*40*120. 权值共享 CNN中权值共享理解 借用前人的介绍: (1) 针对一个神经元,例如一幅640*360图像,一个神经元要对应640*360个像素点,即一个神经元对应全局图像,全连接的话一个神经元就有640*360个参数; (2) 图像的空间联系是局部的,就像人是通过一个局部的感受野去感受外界图像一样,每一个神经元都不需要对全局图像做感受,每个神经元只感受局部的图像区域,然后在更高层,将这些不同局部的神经元综合起来就可以得到全局信息。假如每个局部感受野10 10,每个局部感受野只需要和10 10的局部图像连接,这样一个神经元就只需要10*10个参数; (3) 全局图像是640 360,但局部图像只有10 10大小,10 10个参数只针对局部图像,如果全局图像中各个局部图像之间权值共享的话,即10 10个参数在不同局部图像上参数应用相同的话,则在全局图像上通过全局共享则只需要10*10个参数; (4) 10 10个参数只针对一个神经元

Detecting GAN-generated Imagery using Color Cues

无人久伴 提交于 2019-12-09 21:07:17
Abstract     论文创新点:分析流行GAN网络结构得知,GAN网络生成得图片在颜色处理与真实摄像机拍摄的照片存在不同,主要表现在两方面。     实验结果:证明了两种线索能够有效区分GAN生成图像和用于训练GAN的真实图像。 1.Introduction     本片论文主要是研究GANs网络生成图片的取证检测,虽然他们用肉眼无法区分,但是GANs生成的图片在重要的一些方面和相机拍摄的图像还是存在差别的。通过研究生成器网络的结构,尤其注意到它是如何形成颜色的,并注意到两者有两个重要的区别:(这也就是摘要中的两个像素) 再某种方式限制饱和像素的频率,对生成器内部值是被规范化(Normalized)的来限制输出的大小。(First, the generator’s internal values are normalized to constrain the outputs, in a way which limits the frequency of saturated pixels.) 生成器的对通道的内部表示类似于彩色RGB三通道像素合成的方式,但是所使用的权重与摄像机的类似光谱灵敏度完全不相同。(Second, the generator’s multi-channel internal representation is collapsed to red,

Image Super-Resolution Using Deep Convolutional Networks 论文总结

我与影子孤独终老i 提交于 2019-12-08 17:53:26
Image Super-Resolution Using Deep Convolutional Networks 论文总结 提示: 文中用【】表示的是我没读懂的内容 文中用[]表示的是我不会翻译的内容,翻译都不会,基本上也不理解啦。 Abstract 摘要讲了讲论文写了些啥: 作者们提出了一种针对单图像超分辨的深度学习方法,即SRCNN。该方法直接学习低/高分辨率图像之间的端到端映射。映射是用一个低分辨率图像为输入,高分辨率图像为输出的深度卷积神经网络来表示的。 证明了传统基于稀疏编码的SR方法也可以看作是一个深度卷积网络。 传统方法是分别处理每个组件,而SRCNN联合优化所有层。 SRCNN具有轻量级的结构,同时有最先进的恢复质量,并且实现了快速的实际在线使用。 作者们探索了不同的网络结构和参数设置,以实现性能和速度之间的权衡。 SRCNN可以同时处理三个颜色通道,表现出更好的整体重建质量。 Introduction 超分辨率问题本质是不适定的( inherently ill-posed)或者说超分辨率是个欠定逆问题( underdetermined inverse problem)。意思就是超分辨率是个解不是唯一的问题,因为对于任何给定的低分辨率像素都存在多重解。对于这个问题通常用强先验信息约束解空间来缓解,为了学习强先验信息,现在最先进的方法大多基于例子的策略(example

OpenCV Mat读取和显示图片

家住魔仙堡 提交于 2019-12-08 03:13:04
一、从文件读取图像并显示 1. 程序 在 基于VS2013搭建OpenCV开发环境 这篇文章的最后给出了一个简单的Demo,这个例子跟本篇使用的例子是一样的。打开C++ IDE并创建一个新的项目,新建一个源文件,粘贴下面的代码: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 #include <opencv2\highgui\highgui.hpp> #include <iostream> using namespace cv; using namespace std; int main( int argc, const char ** argv) { Mat img = imread( "earth.jpg" , CV_LOAD_IMAGE_UNCHANGED); if (img.empty()) { cout << "图像加载失败!" << endl; //system("pause"); return -1; } //创建一个名字为MyWindow的窗口 namedWindow( "MyWindow" , CV_WINDOW_AUTOSIZE); //在MyWindow的窗中中显示存储在img中的图片 imshow( "MyWindow" , img); //等待直到有键按下 waitKey

AI-图像基础知识-02

痞子三分冷 提交于 2019-12-05 12:32:01
目录 图像坐标系 图像数字化 图像坐标系     在前面的数据标注文章中讲述如何进行标注,而标注后会保留4个坐标点,那么这些坐标点如何表示在图片中的位置?要表示一个点或图形的位置,就需要涉及到坐标系的概念。今天就来了解一下图像的坐标系。一般大家首先接触到的坐标系应该是的笛卡尔坐标系,如下所示:     如下图所示,是以图像左上角为原点建立的以像素为单位的直角坐标系 u-v 。其横坐标u与纵坐标v分别是在其图像数组中所在的列数和行数。 以上坐标在OpenCV中,u对应 x , v对应 y     由于 (u,v) 只代表像素的列数与行数,而像素在图像中的位置并没有用物理单位表示出来,所以还要建立以物理单位(如毫米)表示的图像坐标系x-y。将相机光轴与图像平面的交点(一般位于图像平面的中心处,也称为图像的主点(principal point)定义为该坐标系的原点O1,且x轴与u轴平行,y轴与v轴平行,假设(u0,v0)代表O1在u-v坐标系下的坐标,dx与dy分别表示每个像素在横轴x和纵轴y上的物理尺寸,则图像中的每个像素在u-v坐标系中的坐标和在x-y坐标系中的坐标之间都存在如下的关系: 上述公式中我们假设物理坐标系统中的单位为mm,则dx的单位为mm/px,而x/dx的单位则是px.     为使用方便,一般常用齐次坐标与矩阵形式表示为:     以上知识可能比较难懂