Very Deep Convolutional Networks for Large-Scale Image Recognition—VGG论文翻译
Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan∗ & Andrew Zisserman+ Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk 摘要 在这项工作中,我们研究了在大规模的图像识别环境下卷积网络的深度对识别的准确率的影响。我们的主要贡献是使用非常小的(3×3)卷积滤波器架构对网络深度的不断增加并进行全面评估,这表明通过将深度增加到16-19层可以实现对现有技术配置的显著改进。这些发现是我们ImageNet Challenge 2014提交的基础,我们的团队在定位和分类过程中分别获得了第一名和第二名。我们还证明了我们的研究可以很好的推广到其他数据集上,从而在其它数据集上取得了最好的结果。我们已公开了两个性能最好的ConvNet模型,以便促进对于计算机视觉中深度视觉表示的进一步研究。 1 引言 卷积网络(ConvNets)近来在大规模图像和视频识别方面取得了巨大成功(Krizhevsky等,2012;Zeiler&Fergus,2013;Sermanet等,2014;Simonyan&Zisserman