tpu

how to use torchaudio with torch xla on google colab tpu

ぃ、小莉子 提交于 2020-08-10 01:06:12
问题 I'm trying to run a pytorch script which is using torchaudio on a google TPU. To do this I'm using pytorch xla following this notebook, more specifically I'm using this code cell to load the xla: !pip install torchaudio import os assert os.environ['COLAB_TPU_ADDR'], 'Make sure to select TPU from Edit > Notebook settings > Hardware accelerator' VERSION = "20200220" #@param ["20200220","nightly", "xrt==1.15.0"] !curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup

How to connect to private storage bucket using the Google Colab TPU

半世苍凉 提交于 2020-07-30 21:35:42
问题 I am using google colab pro and the provided TPU. I need to upload a pre-trained model into the TPU. TPU can load data only from a google cloud storage bucket. I created a cloud storage bucket and extracted the pre-trained model files in the bucket. Now I need to give permission to the TPU to access my private bucket, but I don't know the service account of the TPU. How do I find it? For now I just have All:R read permission to the bucket and the TPU initialized successfully but clearly this

Google EdgeTPU can't get PWM to work with Python

∥☆過路亽.° 提交于 2020-07-22 02:51:08
问题 Here is my testing code: from periphery import PWM import time # Open PWM channel 0, pin 0 pwm = PWM(0,0) # Set frequency to 1 kHz pwm.frequency = 50 # Set duty cycle to 75% pwm.duty_cycle = 0.02 pwm.enable() print(pwm.period) print(pwm.frequency) print(pwm.enabled) # Change duty cycle to 50% pwm.duty_cycle = 0.05 pwm.close() Problem is this part: # Open PWM channel 0, pin 0 pwm = PWM(0,0) I can see output when running PWM(0,0) PWM(0,1) PWM(0,2) but I get the error messsage when trying to run

Google EdgeTPU can't get PWM to work with Python

强颜欢笑 提交于 2020-07-22 02:49:11
问题 Here is my testing code: from periphery import PWM import time # Open PWM channel 0, pin 0 pwm = PWM(0,0) # Set frequency to 1 kHz pwm.frequency = 50 # Set duty cycle to 75% pwm.duty_cycle = 0.02 pwm.enable() print(pwm.period) print(pwm.frequency) print(pwm.enabled) # Change duty cycle to 50% pwm.duty_cycle = 0.05 pwm.close() Problem is this part: # Open PWM channel 0, pin 0 pwm = PWM(0,0) I can see output when running PWM(0,0) PWM(0,1) PWM(0,2) but I get the error messsage when trying to run

谷歌Coral USB Accelerator最新安装使用指南

為{幸葍}努か 提交于 2020-02-04 15:37:25
谷歌Coral USB加速器是一种USB设备,提供Edge TPU作为计算机的协处理器。 当连接到Linux,Mac或Windows主机时,它可以加快机器学习模型的推理速度。 你需要做的就是在连接USB Accelerator的计算机上下载Edge TPU运行时和TensorFlow Lite库。 然后,使用示例应用程序执行图像分类。 系统要求: 具有以下操作系统之一的计算机: ·Linux Debian 6.0或更高版本,或其任何派生版本(例如Ubuntu 10.0+),以及x86-64或ARM64系统架构(支持Raspberry Pi,但我们仅测试了Raspberry Pi 3 Model B +和Raspberry Pi 4) ·安装了MacPorts或Homebrew的macOS 10.15 ·Windows 10 -一个可用的USB端口(为获得最佳性能,请使用USB 3.0端口) -Python 3.5、3.6或3.7 操作流程 一、 安装Edge TPU runtime 需要Edge TPU runtime才能与Edge TPU通信。 你可以按照以下说明在主机,Linux,Mac或Windows上安装它。 1、Linux系统 1)将官方提供的Debian package添加到你的系统中: 2)安装Edge TPU runtime: 使用随附的USB 3.0电缆将USB

Convert Keras model to quantized Tensorflow Lite model that can be used on Edge TPU

一笑奈何 提交于 2020-01-02 21:58:16
问题 I have a Keras model that I want to run on the Coral Edge TPU device. To do this, it needs to be a Tensorflow Lite model with full integer quantization. I was able to convert the model to a TFLite model: model.save('keras_model.h5') converter = tf.lite.TFLiteConverter.from_keras_model_file("keras_model.h5") tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) But when I run edgetpu_compiler converted_model.tflite , I get this error: Edge TPU Compiler

How to transform keras model to tpu model

安稳与你 提交于 2019-12-24 01:09:42
问题 I am trying to transform my Keras model in the Google cloud console into a TPU model. Unfortunatelly I am getting an error as shown below. My minimal example is the following: import keras from keras.models import Sequential from keras.layers import Dense, Activation import tensorflow as tf import os model = Sequential() model.add(Dense(32, input_dim=784)) model.add(Dense(32)) model.add(Activation('relu')) model.compile(optimizer='rmsprop', loss='mse') tpu_model = tf.contrib.tpu.keras_to_tpu

拥抱TF2.0的时代来了

一个人想着一个人 提交于 2019-12-16 11:11:04
AI = 算法 + 实现 忘掉 tf 1.0吧!!! TPU tf 加速硬件 学习建议 忘记1.0 Tensorflow 和Pytorch 选择一个主修 Keras 逐渐淡出 TF.kreas Pytorch + caffe2 为什么是用tensorflow GPU加速 (速度快) 来源: https://www.cnblogs.com/D-M-C/p/12045256.html

Session lost with Keras and TPUs in Google Colab

断了今生、忘了曾经 提交于 2019-12-13 20:25:39
问题 I have been trying to get the TPUs working for a classification project. The dataset is quite big, ~150gb, so I cannot load it all in memory. Thus I have been using Dask. Dask doesn't integrate with tf.Dataset directly so I have to create a loader inspired by parallelising tf.data.Dataset.from_generator The dataset generates correctly when replacing the .fit with: iterator = ds.make_one_shot_iterator() next_element = iterator.get_next() with tf.Session() as sess: for i in range(1): val = sess

Edge TPU Compiler: ERROR: quantized_dimension must be in range [0, 1). Was 3

大憨熊 提交于 2019-12-03 06:19:10
问题 I'm trying to get a Mobilenetv2 model (retrained last layers to my data) to run on the Google edge TPU Coral. I've followed this tuturial https://www.tensorflow.org/lite/performance/post_training_quantization?hl=en to do the post-training quantization. The relevant code is: ... train = tf.convert_to_tensor(np.array(train, dtype='float32')) my_ds = tf.data.Dataset.from_tensor_slices(train).batch(1) # POST TRAINING QUANTIZATION def representative_dataset_gen(): for input_value in my_ds.take(30)