天线阻抗

输入阻抗和输出阻抗

醉酒当歌 提交于 2020-04-01 09:07:51
shoecat 发表于 2007-10-4 11:03:00 5 推荐 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源 U ,测量输入端的电流 I ,则输入阻抗 Rin 就是 U/I 。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑 阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为 0 ,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻 r 的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻 r ,就是(信号源 / 放大器输出 / 电源)的内阻了。当这个电压源给负载供电时,就会有电流 I 从这个负载上流过

阻抗匹配

ⅰ亾dé卋堺 提交于 2020-03-27 07:18:38
阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 阻抗匹配主要有两点作用,调整负载功率和抑制信号反射。 {扩展:我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P = I2×R=[U/(R+r)]2×R = U2×R/(R2+2×R×r+r2) = U2×R/[(R-r)2+4×R×r] = U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。} 如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思

输入阻抗

非 Y 不嫁゛ 提交于 2020-03-20 07:25:01
输入阻抗什么时候要高什么时候要低,与前级输出有关,与你要传递信号的方式有关 对于单向接口,要保证输入阻抗等于或大于输入阻抗. 对于双向接口,要求输入输出阻抗尽量接近,以防衰减和静端反射. 通俗理解,如果你的输出信号输出电阻大,你要确保接收端输入电阻更大,信号才能有效接收,否则按照分压,信号将失真。 对于任一个四端网络(包括有源的放大器等,及无源的衰耗器等),在信号输入端输入电压与输入电流之比,称为输入阻抗。同样,在输出端,输出电压与输出电流之比为输出阻抗。   在信号的传递中,一般要求相链接的两个网络的阻抗匹配:前一个网络的输出阻抗与后一个网络的输入阻抗相等。这时链接处没有反射波存在,传输效率最高,不会产生反射的杂波等等。例如:同轴线的阻抗是75欧,电视机的天线输入处的阻抗也是75欧,达到阻抗匹配。 音频放大器输出为什么外接的阻抗要与内阻抗相等呢,这是因为只有相等时获得的功率最大,当外接阻抗小于内阻抗时,电流会增加,但内阻抗的功率大于外接的功率,而且输出电流有限制。当外接的阻抗大于内阻抗时,工作电流会减小,外接的功率也下降。所谓阻抗匹配就是这个道理 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样

【解析】为什么要进行阻抗匹配?

我是研究僧i 提交于 2020-03-07 06:54:48
一、什么是阻抗 在电学中,常把对电路中电流所起的阻碍作用叫做阻抗。阻抗单位为欧姆,常用Z表示,是一个复数Z= R+i( ωL–1/(ωC))。具体说来阻抗可分为两个部分,电阻(实部)和电抗(虚部)。其中电抗又包括容抗和感抗,由电容引起的电流阻碍称为容抗,由电感引起的电流阻碍称为感抗。 图1 复数表示方法 二、阻抗匹配的重要性 阻抗匹配是指信号源或者传输线跟负载之间达到一种适合的搭配。阻抗匹配主要有两点作用,调整负载功率和抑制信号反射。 1、调整负载功率 假定激励源已定,那么负载的功率由两者的阻抗匹配度决定。对于一个理想化的纯电阻电路或者低频电路,由电感、电容引起的电抗值基本可以忽略,此时电路的阻抗来源主要为电阻。如图2所示,电路中电流I=U/(r+R),负载功率P=I*I*R。由以上两个方程可得当R=r时P取得最大值,Pmax=U*U/(4*r)。 图2 负载功率调整 2、抑制信号反射 当一束光从空气射向水中时会发生反射,这是因为光和水的光导特性不同。同样,当信号传输中如果传输线上发生特性阻抗突变也会发生反射。波长与频率成反比,低频信号的波长远远大于传输线的长度,因此一般不用考虑反射问题。高频领域,当信号的波长与传输线长出于相同量级时反射的信号易与原信号混叠,影响信号质量。通过阻抗匹配可有效减少、消除高频信号反射。 图3 正常信号 图4 异常信号(反射引起超调) 三、阻抗匹配的方法

看完从此远离EMC困扰

杀马特。学长 韩版系。学妹 提交于 2020-01-11 05:19:19
电磁兼容性或电磁兼容(EMC)是在电学中研究意外电磁能量的产生、传播和接收,以及这种能量所引起的有害影响。目标是在相同环境下,涉及电磁现象的不同设备都能够正常运转,而且不对此环境中的任何设备产生难以忍受的电磁干扰之能力。下面分几部分详细介绍。 第一部分 电磁骚扰的耦合机理 1、基本概念 电磁骚扰传播或耦合,通常分为两大类:即传导骚扰传播和辐射骚扰传播。通 过导体传播的电磁骚扰,叫传导骚扰;通过空间传播的电磁骚扰,叫辐射骚扰。 上图传染病的模型非常近似: 2、 电磁骚扰的常用单位 骚扰的单位通用分贝来表示,分贝的原始定义为两个功率的比: 通常用 dBm 表示功率的单位,dBm 即是功率相对于 1mW 的值: 通过以下的推导可知电压由分贝表示为(注意有一个前提条件为 R1=R2): 通常用 dBuV 表示电压的大小,dBuV 即是电压相对于 1uV 的值。 对于辐射骚扰通常用电磁场的大小来度量,其单位是 V/m。通常用的单位是dBuV/m。 3、传导干扰 a、共阻抗耦合 由两个回路经公共阻抗耦合而产生,干扰量是电流 i,或变化的电流 di/dt。 当两个电路的地电流流过一个公共阻抗时,就发生了公共阻抗耦合。我们在放大器中,级与级之间的一种耦合方式是“阻容”耦合方式,这就是一种利用公共阻抗进行信号耦合的应用。在这里,上一级的输出与下一级的输入共用一个阻抗。 由于地线就是信号的回流线

(笔记)电路设计(三)之0欧姆电阻、磁珠、电感的应用

随声附和 提交于 2019-12-25 05:23:21
背景:为统筹电路设计较全面的知识点,本人将在近期推出电路设计中各种常用器件与设计理念,如基 本元 器件电阻、电容、电感、二极管保护,存储器件 SDRAM、FLASH,PCB设计工艺DCDC电源、PCB板布线设计工艺等,希望能为大家提供些许参考。 在电路设计中,经常需要使用匹配电阻,如 闭路电视同轴电缆 、时钟数据线等, 如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备 。 关于串联 匹配 电阻其作用 : 1、概 述 : 高速信号线中才考虑使用这样的电阻 , 低频情况下,一般是直接连接 。 这个电阻有两个作用 : ① 阻抗匹配 : 因为信号源的阻抗很低,跟信号线之间阻抗不匹配,串上一个电阻后,可改善匹配情况,以减少反射,避免振荡等 。 ② 减少信号边沿的陡峭程度 : 可以 减少信号边沿的陡峭程度,从而减少高频噪声以及过冲等 。 因为串联的电阻,跟信号线的分布电容以及负载的输入电容等形成一个RC 电路,这样就会降低信号边沿的陡峭程度大家知道,如果一个信号的边沿非常陡峭,含有大量的高频成分,将会辐射干扰,另外,也容易产生过冲 。 2、 详述(阻抗匹配) 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式 。

0欧姆电阻和磁珠的作用

耗尽温柔 提交于 2019-12-23 00:54:29
引用: http://longer.spaces.eepw.com.cn/articles/trackback/item/47780 0欧姆电阻作用 1,在电路中没有任何功能,只是在PCB上为了调试方便或兼容设计等原因。 2,可以做跳线用,如果某段线路不用,直接不贴该电阻即可(不影响外观) 3,在匹配电路参数不确定的时候,以0欧姆代替,实际调试的时候,确定参数,再以具体数值的元件代替。 4,想测某部分电路的耗电流的时候,可以去掉0ohm电阻,接上电流表,这样方便测耗电流。 5,在布线时,如果实在布不过去了,也可以加一个0欧的电阻 6,在高频信号下,充当电感或电容。(与外部电路特性有关)电感用,主要是解决EMC问题。如地与地,电源和IC Pin间 7,单点接地(指保护接地、工作接地、直流接地在设备上相互分开,各自成为独立系统。) 8,熔丝作用。由于PCB上走线的熔断电流较大,如果发生短路过流等故障时,很难熔断,可能会带来更大的事故。 由于0欧电阻电流承受能力比较弱(其实0欧电阻也是有一定的电阻的,只是很小而已),过流时就先将0欧电阻熔断了,从而将电路断开, 磁珠 电感是储能元件,而磁珠是能量转换(消耗)器件。 电感多用于电源滤波回路 , 侧重于抑止传导性干扰( 传导干扰 主要是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰) ; 磁珠多用于信号回路 , 主要用于EMI

EMC整改报告-待续

最后都变了- 提交于 2019-12-06 06:04:34
EMC 整改报告 一、 EMC 概述 1. EMC 设计主要针对 EMI+EMS ,常见的 EMI 测试包括电源线的传导骚扰( CE )和辐射发射( RE )测试, EMS 测试包括: ESD 、电源线的 EFT 、电源线的雷击和浪涌测试、电源线的抗扰度测试 ; 三要素是干扰源、耦合途径、敏感器件;主要对策:疏(滤波、接地)和堵(屏蔽) 2. 用高频的视角看问题 3. 所有信号都是从地流回去的 4. 共模干扰与差模干扰: 共模干扰往往是指同时加载在各个输入信号接口段的共有的信号干扰。共模干扰是在信号线与地之间传输,属于非对称性干扰。共模干扰好比两个人同时向前或者向后推你,于此相对的差模干扰则是一前一后在拉你。 二、 EMC 测试模型: 1. 辐射发射测试: 一般都是先将水平和垂直做一遍测试,这时主要是测峰值,然后在针对峰值读点,读点测的是平均值,TUV等认证时也是读点; 2. 传导骚扰测试: 2.1 需要的仪器:接收机、 LISN 网络(三相、单相)、参考接地,一个重要的条件是一个 2m*2m 以上面积的参考地平面,并超出 EUT 边界至少 0.5m; 一般在屏蔽室内进行,如下图 2.2 电源口传导骚扰测试的拓扑图如下 , 此时构成了一个环路,成为了天线,此处应注意电源线和接地线之间的面积,并且尽量将 EUT 的接地线接到 LISN 上,而不要就近接到参考地金属板上( 50R

EMC 定义

感情迁移 提交于 2019-12-06 06:04:10
电磁兼容,简称EMC(electromagnetic compatibility)。它包含两个方面,一个是干扰其他的电器产品,简称EMI(electromagnetic interference),即电磁干扰;另一个是被其他电器产品干扰,叫抗干扰性,我们用EMS(electromagnetic susceptibility)表示。 那么信号速度的本质是什么?是信号的上升斜率和下降斜率。 什么叫ESD测试? ESD测试是关于静电测试,当静电打向产品的时候,产品不会出现异常跑飞的现象的测试。 ------------------------------------------------------------------------------------------------------------------------------------------------------ 今天让我们抛开事物的谜团,掌握其本质,彻底了解和掌握电磁兼容产生的原因并找到解决的方法,让工程师睡个安稳觉。 破解模拟硬件设计有三大定律: 第一,源、回路、阻抗; 第二,电路是一个波形的整形,从无用的波形最终整形有用的波形,包括形态、相位的整形; 第三,对元器件的参数、封装、鲁棒性、成本要熟知,这样才把产品设计在临界区。 我们在此可以运用第一大定律源、回路、阻抗来融入到产品设计中

基于电磁兼容技术的多层PCB布线设计需要注意的事项

早过忘川 提交于 2019-12-06 02:07:31
一、前言 电磁兼容(Electro-MagneticCompatibility,简称EMC)是一门新兴综合性学科,它主要研究电磁干扰和抗干扰问题。电磁兼容性是指电子设备或系统在规定的电磁环境电平下,不因电磁干扰而降低性能指标,同时它们本身产生的电磁辐射不大于限定的极限电平,不影响其它系统的正常运行,并达到设备与设备、系统与系统之间互不干扰、共同可靠工作的目的。 电磁干扰(EMI)产生是由于电磁干扰源通过耦合路径将能量传递给敏感系统造成的,它 包括由导线和公共地线的传导、通过空间辐射或近场耦合3种基本形式。 实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响,所以保证印制电路板电磁兼容性是整个系统设计的关键,本文主要讨论电磁兼容技术及其在多层印制线路板(PrintedCircuitBoard,简称PCB)设计中的应用。 PCB是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接,是各种电子设备最基本的组成部分。如今,大规模和超大规模集成电路已在电子设备中得到广泛应用,而且元器件在印刷电路板上的安装密度越来越高,信号的传输速度更是越来越快,由此而引发的EMC问题也变得越来越突出。PCB有单面板(单层板)、双面板(双层板)和多层板之分。单面板和双面板一般用于低、中密度布线的电路和集成度较低的电路,多层板使用高密度布线和集成度高的电路