CTR预估模型——FM、FFM、DeepFM
一、CTR(Click Through Rate,点击率) 点击率(click-through rate, CTR) 是点击特定链接的用户与查看页面,电子邮件或广告的总用户数量之比。它通常用于衡量某个网站的在线广告活动是否成功,以及电子邮件活动的有效性,是互联网公司进行流量分配的核心依据之一。 无论使用什么类型的模型,点击率这个命题可以被归纳到二元分类的问题,我们通过单个个体的特征,计算出对于某个内容,是否点击了,点击了就是1,没点击就是0。对于任何二元分类的问题,最后我们都可以归结到逻辑回归上面。 早期的人工特征工程 + LR(Logistic Regression):这个方式需要大量的人工处理,不仅需要对业务和行业有所了解,对于算法的经验要求也十分的高。 GBDT(Gradient Boosting Decision Tree) + LR:提升树短时这方面的第二个里程碑,虽然也需要大量的人工处理,但是由于其的可解释性和提升树对于假例的权重提升,使得计算准确度有了很大的提高。 FM-FFM:FM和FFM模型是最近几年提出的模型,并且在近年来表现突出,分别在由Criteo和Avazu举办的CTR预测竞赛中夺得冠军,使得到目前为止,还都是以此为主的主要模型占据主导位置。 Embedding模型可以理解为FFM的一个变体。 CTR预估技术从传统的Logistic回归