深度学习-最优化笔记
作者:杜客 链接:https://zhuanlan.zhihu.com/p/21360434 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 译者注:本文 智能单元 首发,译自斯坦福CS231n课程笔记 Optimization Note ,课程教师 Andrej Karpathy 授权翻译。本篇教程由 杜客 翻译完成, 堃堃 和 李艺颖 进行校对修改。译文含公式和代码,建议PC端阅读。 原文如下 内容列表: 简介 损失函数可视化 最优化 策略#1:随机搜索 策略#2:随机局部搜索 策略#3:跟随梯度 译者注:上篇截止处 梯度计算 使用有限差值进行数值计算 微分计算梯度 梯度下降 小结 简介 在上一节中,我们介绍了图像分类任务中的两个关键部分: 基于参数的 评分函数。 该函数将原始图像像素映射为分类评分值(例如:一个线性函数)。 损失函数 。该函数能够根据分类评分和训练集图像数据实际分类的一致性,衡量某个具体参数集的质量好坏。损失函数有多种版本和不同的实现方式(例如:Softmax或SVM)。 上节中,线性函数的形式是 ,而SVM实现的公式是: 对于图像数据 ,如果基于参数集 做出的分类预测与真实情况比较一致,那么计算出来的损失值 就很低。现在介绍第三个,也是最后一个关键部分: 最优化Optimization