softmax

Softmax回归(Softmax Regression)

て烟熏妆下的殇ゞ 提交于 2019-12-27 05:04:06
转自:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即 。例如在邮件分类问题中,我们要把邮件分为垃圾邮件、个人邮件、工作邮件3类,目标值y是一个有3个取值的离散值。这是一个多分类问题,二分类模型在这里不太适用。 多分类问题符合 多项分布 。有许多算法可用于解决多分类问题,像决策树、朴素贝叶斯等。这篇文章主要讲解多分类算法中的 Softmax回归(Softmax Regression) 推导思路为:首先证明多项分布属于指数分布族,这样就可以使用广义线性模型来拟合这个多项分布,由广义线性模型推导出的目标函数 即为Softmax回归的分类模型。 证明多项分布属于指数分布族 多分类模型的输出结果为该样本属于k个类别的概率,从这k个概率中我们选择最优的概率对应的类别(通常选概率最大的类别),作为该样本的预测类别。这k个概率用k个变量 , …, 表示。这个k变量和为1,即满足: 可以用前k-1个变量来表示,即: 使用 广义线性模型 拟合这个多分类问题,首先要验证这个多项分布是否符合一个指数分布族。定义T(y)为: 在这里,统计分量T(y)并没有像之前那样定义为T(y)=y,因为T(y)不是一个数值,而是一个k-1维的向量。使用符号 表示向量T(y)的第i个元素。 在这里引入一个新符号: ,如果括号内为true则这个符号取1

Softmax回归(Softmax Regression)

不想你离开。 提交于 2019-12-27 05:03:09
转载请注明出处: http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即 。例如在邮件分类问题中,我们要把邮件分为垃圾邮件、个人邮件、工作邮件3类,目标值y是一个有3个取值的离散值。这是一个多分类问题,二分类模型在这里不太适用。 多分类问题符合 多项分布 。有许多算法可用于解决多分类问题,像决策树、朴素贝叶斯等。这篇文章主要讲解多分类算法中的 Softmax回归(Softmax Regression) 推导思路为:首先证明多项分布属于指数分布族,这样就可以使用广义线性模型来拟合这个多项分布,由广义线性模型推导出的目标函数 即为Softmax回归的分类模型。 证明多项分布属于指数分布族 多分类模型的输出结果为该样本属于k个类别的概率,从这k个概率中我们选择最优的概率对应的类别(通常选概率最大的类别),作为该样本的预测类别。这k个概率用k个变量 , …, 表示。这个k变量和为1,即满足: 可以用前k-1个变量来表示,即: 使用 广义线性模型 拟合这个多分类问题,首先要验证这个多项分布是否符合一个指数分布族。定义T(y)为: 在这里,统计分量T(y)并没有像之前那样定义为T(y)=y,因为T(y)不是一个数值,而是一个k-1维的向量。使用符号 表示向量T(y)的第i个元素。 在这里引入一个新符号:

Softmax回归(Softmax Regression)

China☆狼群 提交于 2019-12-27 05:02:23
转载请注明出处: http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即 。例如在邮件分类问题中,我们要把邮件分为垃圾邮件、个人邮件、工作邮件3类,目标值y是一个有3个取值的离散值。这是一个多分类问题,二分类模型在这里不太适用。 多分类问题符合 多项分布 。有许多算法可用于解决多分类问题,像决策树、朴素贝叶斯等。这篇文章主要讲解多分类算法中的 Softmax回归(Softmax Regression) 推导思路为:首先证明多项分布属于指数分布族,这样就可以使用广义线性模型来拟合这个多项分布,由广义线性模型推导出的目标函数 即为Softmax回归的分类模型。 证明多项分布属于指数分布族 多分类模型的输出结果为该样本属于k个类别的概率,从这k个概率中我们选择最优的概率对应的类别(通常选概率最大的类别),作为该样本的预测类别。这k个概率用k个变量 , …, 表示。这个k变量和为1,即满足: 可以用前k-1个变量来表示,即: 使用 广义线性模型 拟合这个多分类问题,首先要验证这个多项分布是否符合一个指数分布族。定义T(y)为: 在这里,统计分量T(y)并没有像之前那样定义为T(y)=y,因为T(y)不是一个数值,而是一个k-1维的向量。使用符号 表示向量T(y)的第i个元素。 在这里引入一个新符号:

涨姿势!一文了解深度学习中的注意力机制

早过忘川 提交于 2019-12-25 16:39:20
全文共 11413 字,预计学习时长 33 分钟 图源:Unsplash “每隔一段时间,就会出现一种能改变一切的革命性产品。” ——史蒂夫·乔布斯(SteveJobs) 这句21世纪最知名的言论之一与深度学习有什么关系呢? 想想看。计算能力的提升带来了一系列前所未有的突破。 若要追根溯源,答案将指向注意力机制。简而言之,这一全新概念正在改变我们应用深度学习的方式。 图源:Unsplash 注意力机制是过去十年中,深度学习研究领域最具价值的突破之一。 它催生了包括Transformer架构和Google的BERT在内的自然语言处理(NLP)领域的许多近期突破。如果你目前(或打算)从事NLP相关工作,一定要了解什么是注意力机制及其工作原理。 本文会讨论几种注意力机制的基础、流程及其背后的基本假设和直觉,并会给出一些数学公式来完整表达注意力机制,以及能让你在Python中轻松实现注意力相关架构的代码。 大纲 l 注意力机制改变了我们应用深度学习算法的方式 l 注意力机制彻底改变了自然语言处理(NLP)甚至计算机视觉等领域 l 本文将介绍注意力机制在深度学习中的工作原理,以及如何用Python将其实现 目录 1.什么是注意力? 1. 深度学习是如何引入注意力机制的 2. 了解注意力机制 2.使用Keras在Python中实现简单的注意力模型 3.全局与局部注意力 4

Is there a simple way to extend an existing activation function? My custom softmax function returns: An operation has `None` for gradient

|▌冷眼眸甩不掉的悲伤 提交于 2019-12-23 23:06:38
问题 I want to implement an attempt to make softmax faster by using only the top k values in the vector. For that I tried implementing a custom function for tensorflow to use in a model: def softmax_top_k(logits, k=10): values, indices = tf.nn.top_k(logits, k, sorted=False) softmax = tf.nn.softmax(values) logits_shape = tf.shape(logits) return_value = tf.sparse_to_dense(indices, logits_shape, softmax) return_value = tf.convert_to_tensor(return_value, dtype=logits.dtype, name=logits.name) return

face recognition[angular/consine-margin-based][L2-Softmax]

。_饼干妹妹 提交于 2019-12-23 22:25:57
本文来自《L2-constrained Softmax Loss for Discriminative Face Verification》,时间线为2017年6月。 近些年,人脸验证的性能因引入了深度卷积网络而提升很大。一个典型的人脸识别流程就是: 训练一个基于softmax loss的深度卷积网络; 提取倒数第二层作为每个样本图片的特征表征; 基于两个样本的表征向量,计算cos的向量相似度。 softmax本身并不会让两个正样本对的相似度得分优化的更大,两个负样本对的相似度得分优化的更小。而实际需要中,需要构建具有类内紧凑性和类间可分性的特征,这会存在瓶颈,所以需要在loss上增加一些类似正则项的东西。本文中,作者在特征表征层加入 \(L_2\) 约束,意图让该样本落在一个固定半径的超球面表面。该模型可以很容易的基于现有的深度学习框架实现。通过在训练集整合该简单步骤,明显能够提升人脸验证的性能。特别的,在IJB-A上的True Accept Rate为0.909,False Accept Rate为0.0001。 近些年,人脸识别上也有不少出色的工作,其主要从2个角度解决人脸验证上的问题: 将人脸图片对输入到训练算法中,并获得embedding向量,在该向量中,正对(相同ID的人脸)会更靠近,负对(不同ID的人脸)会更远离。如《Learning a similarity

What is the replace for softmax layer in case more than one output can be activated?

强颜欢笑 提交于 2019-12-23 12:32:53
问题 For example, I have CNN which tries to predict numbers from MNIST dataset (code written using Keras). It has 10 outputs, which form softmax layer. Only one of outputs can be true (independently for each digit from 0 to 9): Real: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] Predicted: [0.02, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01] Sum of predicted is equal to 1.0 due to definition of softmax. Let's say I have a task where I need to classify some objects that can fall in several categories: Real

why softmax_cross_entropy_with_logits_v2 return cost even same value

 ̄綄美尐妖づ 提交于 2019-12-21 20:07:12
问题 i have tested "softmax_cross_entropy_with_logits_v2" with a random number import tensorflow as tf x = tf.placeholder(tf.float32,shape=[None,5]) y = tf.placeholder(tf.float32,shape=[None,5]) softmax = tf.nn.softmax_cross_entropy_with_logits_v2(logits=x,labels=y) with tf.Session() as sess: feedx=[[0.1,0.2,0.3,0.4,0.5],[0.,0.,0.,0.,1.]] feedy=[[1.,0.,0.,0.,0.],[0.,0.,0.,0.,1.]] softmax = sess.run(softmax, feed_dict={x:feedx, y:feedy}) print("softmax", softmax) console "softmax [1.8194163 0

transformer整理

会有一股神秘感。 提交于 2019-12-21 02:32:03
介绍 Transformer 是一种基于 encoder-decoder 结构的模型,模型结构如下图所示,在encoder中主要有Multi-Headed Attention和前馈神经网络层组成,decoder 中主要有Multi-Headed Attention、前馈神经网络层和Masked Multi-Headed Attention组成。 在 Encoder 中, Input 经过 embedding 后,要做 positional encodings 经过Multi-head attention 再经过 position-wise Feed Forward 每个子层之间有残差连接 在 Decoder 中, 如上图所示,也有 positional encodings,Multi-head attention 和 FFN,子层之间也要做残差连接,但比 encoder 多了一个 Masked Multi-head attention,最后要经过 Linear 和 softmax 输出概率。 Positional Encoding Positional Encoding 是一种考虑输入序列中单词顺序的方法。 encoder 为每个输入 embedding 添加了一个向量,这些向量符合一种特定模式,可以确定每个单词的位置,或者序列中不同单词之间的距离。计算方式如下: 其中 p o s

How to implement the Softmax derivative independently from any loss function?

最后都变了- 提交于 2019-12-20 12:19:14
问题 For a neural networks library I implemented some activation functions and loss functions and their derivatives. They can be combined arbitrarily and the derivative at the output layers just becomes the product of the loss derivative and the activation derivative. However, I failed to implement the derivative of the Softmax activation function independently from any loss function. Due to the normalization i.e. the denominator in the equation, changing a single input activation changes all