海量数据处理---simhash算法
方法介绍 背景 如果某一天,面试官问你如何设计一个比较两篇文章相似度的算法?可能你会回答几个比较传统点的思路: 一种方案是先将两篇文章分别进行分词,得到一系列特征向量,然后计算特征向量之间的距离(可以计算它们之间的欧氏距离、海明距离或者夹角余弦等等),从而通过距离的大小来判断两篇文章的相似度。 另外一种方案是传统hash,我们考虑为每一个web文档通过hash的方式生成一个指纹(finger print)。 下面,我们来分析下这两种方法。 采取第一种方法,若是只比较两篇文章的相似性还好,但如果是海量数据呢,有着数以百万甚至亿万的网页,要求你计算这些网页的相似度。你还会去计算任意两个网页之间的距离或夹角余弦么?想必你不会了。 而第二种方案中所说的传统加密方式md5,其设计的目的是为了让整个分布尽可能地均匀,但如果输入内容一旦出现哪怕轻微的变化,hash值就会发生很大的变化。 举个例子,我们假设有以下三段文本: the cat sat on the mat the cat sat on a mat we all scream for ice cream 使用传统hash可能会得到如下的结果: irb(main):006:0> p1 = 'the cat sat on the mat' irb(main):007:0> p1.hash => 415542861 irb(main):005