保证分布式系统数据一致性的6种方案
https://www.cnblogs.com/soundcode/p/5590710.html 编者按:本文由「高可用架构后花园」群讨论整理而成。 有人的地方,就有江湖 有江湖的地方,就有纷争 问题的起源 在电商等业务中,系统一般由多个独立的服务组成,如何解决分布式调用时候数据的一致性? 具体业务场景如下,比如一个业务操作,如果同时调用服务 A、B、C,需要满足要么同时成功;要么同时失败。A、B、C 可能是多个不同部门开发、部署在不同服务器上的远程服务。 在分布式系统来说,如果不想牺牲一致性,CAP 理论告诉我们只能放弃可用性,这显然不能接受。为了便于讨论问题,先简单介绍下数据一致性的基础理论。 强一致 当更新操作完成之后,任何多个后续进程或者线程的访问都会返回最新的更新过的值。这种是对用户最友好的,就是用户上一次写什么,下一次就保证能读到什么。根据 CAP 理论,这种实现需要牺牲可用性。 弱一致性 系统并不保证续进程或者线程的访问都会返回最新的更新过的值。系统在数据写入成功之后,不承诺立即可以读到最新写入的值,也不会具体的承诺多久之后可以读到。 最终一致性 弱一致性的特定形式。系统保证在没有后续更新的前提下,系统 最终 返回上一次更新操作的值。在没有故障发生的前提下,不一致窗口的时间主要受通信延迟,系统负载和复制副本的个数影响。DNS 是一个典型的最终一致性系统。 在工程实践上